Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 19(1): 310, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859210

RESUMEN

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the primary malaria prevention and control intervention in many parts of sub-Saharan Africa. While LLINs are expected to last at least 3 years under normal use conditions, they can lose effectiveness because they fall out of use, are discarded, repurposed, physically damaged, or lose insecticidal activity. The contributions of these different interrelated factors to durability of nets and their protection against malaria have been unclear. METHODS: Starting in 2009, LLIN durability studies were conducted in seven countries in Africa over 5 years. WHO-recommended measures of attrition, LLIN use, insecticidal activity, and physical integrity were recorded for eight different net brands. These data were combined with analyses of experimental hut data on feeding inhibition and killing effects of LLINs on both susceptible and pyrethroid resistant malaria vectors to estimate the protection against malaria transmission-in terms of vectorial capacity (VC)-provided by each net cohort over time. Impact on VC was then compared in hypothetical scenarios where one durability outcome measure was set at the best possible level while keeping the others at the observed levels. RESULTS: There was more variability in decay of protection over time by country than by net brand for three measures of durability (ratios of variance components 4.6, 4.4, and 1.8 times for LLIN survival, use, and integrity, respectively). In some countries, LLIN attrition was slow, but use declined rapidly. Non-use of LLINs generally had more effect on LLIN impact on VC than did attrition, hole formation, or insecticide loss. CONCLUSIONS: There is much more variation in LLIN durability among countries than among net brands. Low levels of use may have a larger impact on effectiveness than does variation in attrition or LLIN degradation. The estimated entomological effects of chemical decay are relatively small, with physical decay probably more important as a driver of attrition and non-use than as a direct cause of loss of effect. Efforts to maximize LLIN impact in operational settings should focus on increasing LLIN usage, including through improvements in LLIN physical integrity. Further research is needed to understand household decisions related to LLIN use, including the influence of net durability and the presence of other nets in the household.


Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas , Malaria/prevención & control , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores , Angola , Benin , Gambia , Kenia , Malaria/transmisión , Malaui , Modelos Teóricos , Mozambique , Senegal
2.
Malar J ; 16(1): 288, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716087

RESUMEN

BACKGROUND: Spatial determinants of malaria risk within communities are associated with heterogeneity of exposure to vector mosquitoes. The abundance of adult malaria vectors inside people's houses, where most transmission takes place, should be associated with several factors: proximity of houses to larval habitats, structural characteristics of houses, indoor use of vector control tools containing insecticides, and human behavioural and environmental factors in and near houses. While most previous studies have assessed the association of larval habitat proximity in landscapes with relatively low densities of larval habitats, in this study these relationships were analysed in a region of rural, lowland western Kenya with high larval habitat density. METHODS: 525 houses were sampled for indoor-resting mosquitoes across an 8 by 8 km study area using the pyrethrum spray catch method. A predictive model of larval habitat location in this landscape, previously verified, provided derivations of indices of larval habitat proximity to houses. Using geostatistical regression models, the association of larval habitat proximity, long-lasting insecticidal nets (LLIN) use, house structural characteristics (wall type, roof type), and peridomestic variables (cooking in the house, cattle near the house, number of people sleeping in the house) with mosquito abundance in houses was quantified. RESULTS: Vector abundance was low (mean, 1.1 adult Anopheles per house). Proximity of larval habitats was a strong predictor of Anopheles abundance. Houses without an LLIN had more female Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus than houses where some people used an LLIN (rate ratios, 95% CI 0.87, 0.85-0.89; 0.84, 0.82-0.86; 0.38, 0.37-0.40) and houses where everyone used an LLIN (RR, 95% CI 0.49, 0.48-0.50; 0.39, 0.39-0.40; 0.60, 0.58-0.61). Cooking in the house also reduced Anopheles abundance across all species. The number of people sleeping in the house, presence of cattle near the house, and house structure modulated Anopheles abundance, but the effect varied with Anopheles species and sex. CONCLUSIONS: Variation in the abundance of indoor-resting Anopheles in rural houses of western Kenya varies with clearly identifiable factors. Results suggest that LLIN use continues to function in reducing vector abundance, and that larval source management in this region could lead to further reductions in malaria risk by reducing the amount of an obligatory resource for mosquitoes near people's homes.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Ecosistema , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Animales , Anopheles/crecimiento & desarrollo , Femenino , Kenia , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/fisiología , Densidad de Población
3.
Int J Health Geogr ; 13: 17, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24903736

RESUMEN

BACKGROUND: Predictive models of malaria vector larval habitat locations may provide a basis for understanding the spatial determinants of malaria transmission. METHODS: We used four landscape variables (topographic wetness index [TWI], soil type, land use-land cover, and distance to stream) and accumulated precipitation to model larval habitat locations in a region of western Kenya through two methods: logistic regression and random forest. Additionally, we used two separate data sets to account for variation in habitat locations across space and over time. RESULTS: Larval habitats were more likely to be present in locations with a lower slope to contributing area ratio (i.e. TWI), closer to streams, with agricultural land use relative to nonagricultural land use, and in friable clay/sandy clay loam soil and firm, silty clay/clay soil relative to friable clay soil. The probability of larval habitat presence increased with increasing accumulated precipitation. The random forest models were more accurate than the logistic regression models, especially when accumulated precipitation was included to account for seasonal differences in precipitation. The most accurate models for the two data sets had area under the curve (AUC) values of 0.864 and 0.871, respectively. TWI, distance to the nearest stream, and precipitation had the greatest mean decrease in Gini impurity criteria in these models. CONCLUSIONS: This study demonstrates the usefulness of random forest models for larval malaria vector habitat modeling. TWI and distance to the nearest stream were the two most important landscape variables in these models. Including accumulated precipitation in our models improved the accuracy of larval habitat location predictions by accounting for seasonal variation in the precipitation. Finally, the sampling strategy employed here for model parameterization could serve as a framework for creating predictive larval habitat models to assist in larval control efforts.


Asunto(s)
Anopheles , Ecosistema , Monitoreo del Ambiente/métodos , Insectos Vectores , Malaria/epidemiología , Lluvia , Animales , Humanos , Kenia/epidemiología , Larva , Malaria/diagnóstico , Modelos Teóricos
4.
Malar J ; 10: 10, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21235783

RESUMEN

BACKGROUND: Malaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l. METHODS: To investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays. RESULTS: Anopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested. CONCLUSIONS: The kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a Medicamentos , Proteínas de Insectos/genética , Insecticidas/farmacología , Sustitución de Aminoácidos/genética , Animales , Bovinos , Preescolar , Femenino , Frecuencia de los Genes , Geografía , Humanos , Lactante , Recién Nacido , Kenia , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
5.
Malar J ; 10: 149, 2011 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-21639926

RESUMEN

BACKGROUND: Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. METHODS: Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. RESULTS: Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4%) while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day). Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. CONCLUSIONS: Malaria in Kakuma refugee camp was due mainly to infection with P. falciparum and showed a hyperendemic age-prevalence profile, in an area with otherwise low risk of malaria given prevailing climate. Transmission was sustained by A. arabiensis, whose populations were facilitated by installation of man-made water distribution and catchment systems.


Asunto(s)
Anopheles/crecimiento & desarrollo , Malaria Falciparum/epidemiología , Control de Mosquitos/métodos , Refugiados , Abastecimiento de Agua/normas , Adolescente , Adulto , Animales , Sangre/parasitología , Niño , Preescolar , Pruebas Diagnósticas de Rutina/métodos , Vectores de Enfermedades , Femenino , Humanos , Lactante , Kenia/epidemiología , Malaria Falciparum/transmisión , Masculino , Microscopía , Prevalencia , Adulto Joven
6.
Malar J ; 9: 62, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20187956

RESUMEN

BACKGROUND: High coverage of insecticide-treated bed nets in Asembo and low coverage in Seme, two adjacent communities in western Nyanza Province, Kenya; followed by expanded coverage of bed nets in Seme, as the Kenya national malaria programme rolled out; provided a natural experiment for quantification of changes in relative abundance of two primary malaria vectors in this holoendemic region. Both belong to the Anopheles gambiae sensu lato (s.l.) species complex, namely A. gambiae sensu stricto (s.s.) and Anopheles arabiensis. Historically, the former species was proportionately dominant in indoor resting collections of females. METHODS: Data of the relative abundance of adult A. gambiae s.s. and A. arabiensis sampled from inside houses were obtained from the literature from 1970 to 2002 for sites west of Kisumu, Kenya, to the region of Asembo ca. 50 km from the city. A sampling transect was established from Asembo (where bed net use was high due to presence of a managed bed net distribution programme) eastward to Seme, where no bed net programme was in place. Adults of A. gambiae s.l. were sampled from inside houses along the transect from 2003 to 2009, as were larvae from nearby aquatic habitats, providing data over a nearly 40 year period of the relative abundance of the two species. Relative proportions of A. gambiae s.s. and A. arabiensis were determined for each stage by identifying species by the polymerase chain reaction method. Household bed net ownership was measured with surveys during mosquito collections. Data of blood host choice, parity rate, and infection rate for Plasmodium falciparum in A. gambiae s.s. and A. arabiensis were obtained for a sample from Asembo and Seme from 2005. RESULTS: Anopheles gambiae s.s. adult females from indoor collections predominated from 1970 to 1998 (ca. 85%). Beginning in 1999, A. gambiae s.s decreased proportionately relative to A. arabiensis, then precipitously declined to rarity coincident with increased bed net ownership as national bed net distribution programmes commenced in 2004 and 2006. By 2009, A. gambiae s.s. comprised proportionately ca. 1% of indoor collections and A. arabiensis 99%. In Seme compared to Asembo in 2003, proportionately more larvae were A. gambiae s.s., larval density was higher, and more larval habitats were occupied. As bed net use rose in Seme, the proportion of A. gambiae larvae declined as well. These trends continued to 2009. Parity and malaria infection rates were lower in both species in Asembo (high bed net use) compared to Seme (low bed net use), but host choice did not vary within species in both communities (predominantly cattle for A. arabiensis, humans for A. gambiae s.s.). CONCLUSIONS: A marked decline of the A. gambiae s.s. population occurred as household ownership of bed nets rose in a region of western Kenya over a 10 year period. The increased bed net coverage likely caused a mass effect on the composition of the A. gambiae s.l. species complex, resulting in the observed proportionate increase in A. arabiensis compared to its closely related sibling species, A. gambiae s.s. These observations are important in evaluating the process of regional malaria elimination, which requires sustained vector control as a primary intervention.


Asunto(s)
Anopheles/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Insecticidas , Control de Mosquitos/métodos , Adulto , Animales , Bovinos , Femenino , Humanos , Insectos Vectores/genética , Kenia/epidemiología , Larva , Estudios Longitudinales , Masculino , Densidad de Población , Dinámica Poblacional
7.
J Circadian Rhythms ; 6: 2, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18221544

RESUMEN

BACKGROUND: Anopheles gambiae s.s. Giles is a major malaria vector in Sub-Saharan Africa. Studies of the basic biology of this mosquito, including oviposition, provide a background for assessing which attributes might be exploited for suppressing A. gambiae populations. Here, we report on when during the diel cycle A. gambiae individuals deposit eggs as compared to the ovipositional patterns of groups. METHODS: Battery-powered wall clocks were modified so as to present a unique section of dark and wet ovipositional substrate at hourly intervals over two consecutive 12 h periods. Ovipositional periodicity of mosquito groups (Kisumu laboratory strain or feral females) and individuals was determined by counting the number of eggs present on each section of the ovipositional substrate. Capacity for mid-afternoon oviposition by groups of Kisumu laboratory strain A. gambiae was determined by presenting hypergravid females with an ovipositional substrate exclusively between 1200 and 1600 h. RESULTS: On equatorial time, caged laboratory strain A. gambiae groups deposited 65% of their total eggs between 1800 and 0 h, and the remaining 35% were spread between 0 and 1000 h. Caged house-collected A. gambiae groups deposited 74% of their total eggs between 1800 and 200 h, ceased oviposition for 3 h, and then spread the remaining 26% of their eggs near or after dawn. Ninety-six percent of individual A. gambiae females spread their eggs over a continuous 2-4 h period without interruption. In tests of capacity for mid-afternoon oviposition, females given evening access to an ovipositional resource deposited 2% of their total eggs between 1200 and 1700 h. A. gambiae females given only access to an ovipositional resource between 1200 and 1700 h deposited 3 times more eggs during that time period than did females previously given evening access. CONCLUSION: Confined individual A. gambiae oviposit in a single ca. 2-4 h continuous bout per 24 h. Oviposition is most probable in early scotophase, mid scotophase, or early photophase. However, some oviposition can occur at any hour during 24 h, especially if females were previously deprived of ovipositional substrate.

8.
J Med Entomol ; 55(3): 723-730, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29462354

RESUMEN

Impoundments formed by microdams in rural areas of Africa are important sources of water for people, but they provide potential larval habitats for Anopheles (Diptera: Culicidae) mosquitoes that are vectors of malaria. To study this association, the perimeters of 31 microdam impoundments in western Kenya were sampled for Anopheles larvae in three zones (patches of floating and emergent vegetation, shorelines of open water, and aggregations of cattle hoofprints) across dry and rainy seasons. Of 3,169 larvae collected, most (86.8%) were collected in the rainy season. Of 2,403 larvae successfully reared to fourth instar or adult, nine species were identified; most (80.2%) were Anopheles arabiensis Patton, sampled from hoofprint zones in the rainy season. Other species collected were Anopheles coustani Laveran, Anopheles gambiae s.s. Giles, Anopheles funestus Giles, and Anopheles rivulorum Leeson, Anopheles pharoensis Theobald, Anopheles squamosus Theobald, Anopheles rufipes (Gough), and Anopheles ardensis (Theobald). Larvae of An. funestus were uncommon (1.5%) in both dry and rainy seasons and were confined to vegetated zones, suggesting that microdam impoundments are not primary habitats for this important vector species, although microdams may provide a dry season refuge habitat for malaria vectors, contributing to population persistence through the dry season. In this study, microdam impoundments clearly provided habitat for the malaria vector An. arabiensis in the rainy season, most of which was within the shallow apron side of the impoundments where people brought cattle for watering, resulting in compacted soil with aggregations of water-filled hoofprints. This observation suggests a potential conflict between public health concerns about malaria and people's need for stable and reliable sources of water.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Ecosistema , Lagos , Mosquitos Vectores/fisiología , Animales , Anopheles/crecimiento & desarrollo , Kenia , Larva/crecimiento & desarrollo , Larva/fisiología , Malaria , Mosquitos Vectores/crecimiento & desarrollo , Abastecimiento de Agua
9.
Am J Trop Med Hyg ; 74(1): 44-53, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16407345

RESUMEN

A sampling census revealed 104 aquatic habitats of 6 types for Anopheles gambiae s.l. larvae in a village in western Kenya, namely burrow pits, drainage channels, livestock hoof prints, rain pools, tire tracks, and pools in streambeds. Most habitats were created by human activity and were highly clustered in dispersion pattern within the village landscape. Landscape analysis revealed that six of forty-seven 0.09 km(2) cells superimposed over the village harbored 65% of all habitats. Focus group discussions and in-depth interviews with villagers revealed the extent of knowledge of the village residents of larval habitats, mosquito sources in the local environment, and what might be done to prevent mosquito breeding. Participants did not associate specific habitats with anopheline larvae, expressed reluctance to eliminate habitats because they were sources of domestic water supply, but indicated willingness to participate in a source reduction program if support were available.


Asunto(s)
Anopheles/fisiología , Ecosistema , Conocimientos, Actitudes y Práctica en Salud , Población Rural , Animales , Anopheles/crecimiento & desarrollo , Humanos , Kenia , Larva/fisiología , Malaria/parasitología , Malaria/prevención & control , Control de Mosquitos , Dinámica Poblacional
10.
Am J Trop Med Hyg ; 74(1): 54-61, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16407346

RESUMEN

The productivity of larval habitats of the malaria vector Anopheles gambiae for pupae (the stage preceding adult metamorphosis) is poorly known, yet adult emergence from habitats is the primary determinant of vector density. To assess it, we used absolute sampling methods in four studies involving daily sampling for 25 days in 6 habitat types in a village in western Kenya. Anopheles gambiae s.s. comprised 82.5% of emergent adults and Anopheles arabiensis the remainder. Pupal production occurred from a subset of habitats, primarily soil burrow pits, and was discontinuous in time, even when larvae occupied all habitats continuously. Habitat stability was positively associated with pupal productivity. In a dry season, pupal productivity was distributed between burrow pits and pools in streambeds. Overall, these data support the notion that source reduction measures against recognizably productive habitats would be a useful component of an integrated management program for An. gambiae in villages.


Asunto(s)
Anopheles/fisiología , Ecosistema , Población Rural , Animales , Humanos , Kenia , Larva/fisiología , Control de Mosquitos , Pupa/fisiología , Lluvia , Estaciones del Año , Factores de Tiempo
11.
J Med Entomol ; 43(4): 669-76, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16892623

RESUMEN

We conducted experiments to investigate the importance of algal food resources for larval growth and adult emergence of Anopheles gambiae Giles s.s. in simulated larval habitats in Kenya, and in greenhouse and laboratory microcosms in the United States. In the first experiment, we used shading to reduce algal biomass, and because algal production and larval development might be a function of underlying soil nutrients, we crossed sun-shade treatments with soils of two distinct types collected near larval habitats. Shading reduced pupation rates and total adult biomass of An. gambiae by approximately 50%. Soil type had no significant effect on mosquito production, but it did significantly affect concentrations of phosphorus and chlorophyll a in the surface microlayer. In a subsequent experiment conducted in the greenhouse to reduce temperature differences found between the shaded and sunlit treatments, <1% of larvae in the shaded treatments reached the pupal stage. There was a marked reduction of chlorophyll a levels as a function of shading and larval density. In a third experiment, larvae receiving material harvested from sunlit surface microlayers performed as well as those receiving liver powder, whereas those receiving surface microlayer from shaded habitats suffered >90% mortality and failed to pupate. In a fourth experiment, glucose was added to shaded microcosms to stimulate bacterial activity in the absence of algae. Bacterial growth rates were 2 to 3 times higher, and larval development was enhanced in glucose-amended treatments. However, pupation rates and adult weights in glucose-amended shaded microcosms were still poor compared with those in nonamended sunlit microcosms. Overall, these results demonstrate the importance of algal biomass in the surface microlayers of larval habitats to development and adult production of An. gambiae.


Asunto(s)
Alimentación Animal/provisión & distribución , Anopheles/crecimiento & desarrollo , Biomasa , Chlorophyta/metabolismo , Animales , Peso Corporal , Clorofila/análisis , Clorofila A , Chlorophyta/crecimiento & desarrollo , Ambiente , Femenino , Larva/crecimiento & desarrollo , Masculino , Nitrógeno/análisis , Fósforo/análisis , Pupa/crecimiento & desarrollo , Luz Solar , Factores de Tiempo , Agua/química
12.
Parasit Vectors ; 9(1): 334, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27286834

RESUMEN

BACKGROUND: The 2La chromosomal inversion, a genetic polymorphism in An. gambiae (sensu stricto) (s.s.), is associated with adaptation to microclimatic differences in humidity and desiccation resistance and mosquito behaviors. Ownership of insecticide-treated bed nets (ITNs) for malaria control has increased markedly in western Kenya in the last 20 years. An increase in the frequency of ITNs indoors could select against house entering or indoor resting of Anopheles mosquitoes. Thus, the frequency of the 2La inversion is postulated to change in An. gambiae (s.s.) with the increase of ITN ownership over time. METHODS: Anopheles gambiae mosquitoes were sampled between 1994 and 2011 using pyrethrum knockdown, bednet traps and human landing catches (HLC) from Asembo and Seme, western Kenya. The 2La inversion was detected by a PCR assay with primers designed for proximal breakpoints of the 2La/a and 2L+(a)/+(a) chromosomal conformation. Mosquitoes were tested for malaria parasite infection by sporozoite ELISA. RESULTS: The frequency of the 2La chromosomal inversion declined from 100 % of all chromosomes in 1994 to 17 % in 2005 and remained low through 2011 (21 %). ITN ownership increased from 0 to > 90 % of houses in the study area during this interval. The decline in the frequency of the 2La chromosomal inversion was significantly, negatively correlated with year (r = -0.93) and with increase in ITN ownership (r = -0.96). The frequency of the homo- and heterokaryotypes departed significantly from Hardy-Weinberg equilibrium, suggesting that 2La/a karyotype was under selection, earlier in its favor and later, against it. Precipitation and maximum monthly temperature did not vary over time, therefore there was no trend in climate that could account for the decline. There was no significant difference in frequency of the 2La inversion in An. gambiae (s.s.) females sampled indoors or outdoors in HCL in 2011, nor was there an association between the 2La inversion and infection with Plasmodium falciparum sporozoites. CONCLUSIONS: The increase in ITN ownership in the study area was negatively correlated with the frequency of 2La inversion. The decline in 2La frequency in western Kenya is postulated to be due to differential impacts of ITNs on mosquitoes with different 2La karyotypes, possibly mediated by differences in behavior associated with the 2La karyotypes. Further research is required to determine if this is a widespread phenomenon, to further determine the association of the 2La karyotypes with mosquito behavior, and to assess whether ITNs are exerting selection mediated by differences in behavior on the different karyotypes.


Asunto(s)
Anopheles/genética , Inversión Cromosómica/genética , Mosquiteros Tratados con Insecticida , Distribución Animal , Animales , Femenino , Humanos , Kenia , Propiedad
13.
PLoS One ; 11(1): e0145282, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26731524

RESUMEN

BACKGROUND: Insecticide treated nets (ITNs) and indoor residual spraying (IRS) have been scaled up for malaria prevention in sub-Saharan Africa. However, there are few studies on the benefit of implementing IRS in areas with moderate to high coverage of ITNs. We evaluated the impact of an IRS program on malaria related outcomes in western Kenya, an area of intense perennial malaria transmission and moderate ITN coverage (55-65% use of any net the previous night). METHODS: The Kenya Division of Malaria Control, with support from the US President's Malaria Initiative, conducted IRS in one lowland endemic district with moderate coverage of ITNs. Surveys were conducted in the IRS district and a neighboring district before IRS, after one round of IRS in July-Sept 2008 and after a second round of IRS in April-May 2009. IRS was conducted with pyrethroid insecticides. At each survey, 30 clusters were selected for sampling and within each cluster, 12 compounds were randomly selected. The primary outcomes measured in all residents of selected compounds included malaria parasitemia, clinical malaria (P. falciparum infection plus history of fever) and anemia (Hb<8) of all residents in randomly selected compounds. At each survey round, individuals from the IRS district were matched to those from the non-IRS district using propensity scores and multivariate logistic regression models were constructed based on the matched dataset. RESULTS: At baseline and after one round of IRS, there were no differences between the two districts in the prevalence of malaria parasitemia, clinical malaria or anemia. After two rounds of IRS, the prevalence of malaria parasitemia was 6.4% in the IRS district compared to 16.7% in the comparison district (OR = 0.36, 95% CI = 0.22-0.59, p<0.001). The prevalence of clinical malaria was also lower in the IRS district (1.8% vs. 4.9%, OR = 0.37, 95% CI = 0.20-0.68, p = 0.001). The prevalence of anemia was lower in the IRS district but only in children under 5 years of age (2.8% vs. 9.3%, OR = 0.30, 95% CI = 0.13-0.71, p = 0.006). Multivariate models incorporating both IRS and ITNs indicated that both had an impact on malaria parasitemia and clinical malaria but the independent effect of ITNs was reduced in the district that had received two rounds of IRS. There was no statistically significant independent effect of ITNs on the prevalence of anemia in any age group. CONCLUSIONS: Both IRS and ITNs are effective tools for reducing malaria burden and when implemented in an area of moderate to high transmission with moderate ITN coverage, there may be an added benefit of IRS. The value of adding ITNs to IRS is less clear as their benefits may be masked by IRS. Additional monitoring of malaria control programs that implement ITNs and IRS concurrently is encouraged to better understand how to maximize the benefits of both interventions, particularly in the context of increasing pyrethroid resistance.


Asunto(s)
Anemia/prevención & control , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Piretrinas/farmacología , Adolescente , Adulto , Aerosoles , Anemia/epidemiología , Niño , Estudios Transversales , Femenino , Geografía , Interacciones Huésped-Parásitos/efectos de los fármacos , Vivienda , Humanos , Insecticidas/administración & dosificación , Kenia/epidemiología , Modelos Logísticos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Análisis Multivariante , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Plasmodium falciparum/fisiología , Prevalencia , Piretrinas/administración & dosificación , Factores de Tiempo , Adulto Joven
14.
Am J Trop Med Hyg ; 90(4): 597-604, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24470562

RESUMEN

Historically, the malaria vectors in western Kenya have been Anopheles funestus, Anopheles gambiae s.s., and Anopheles arabiensis. Of these species, An. funestus populations declined the most after the introduction of insecticide-treated bed nets (ITNs) in the 1990s in Asembo, and collections of An. funestus in the region remained low until at least 2008. Contrary to findings during the early years of ITN use in Asembo, the majority of the Anopheles collected here in 2010 and 2011 were An. funestus. Female An. funestus had characteristically high Plasmodium falciparum sporozoite rates and showed nearly 100% anthropophily. Female An. funestus were found more often indoors than outdoors and had relatively low mortality rates during insecticide bioassays. Together, these results are of serious concern for public health in the region, indicating that An. funestus may once again be contributing significantly to the transmission of malaria in this region despite the widespread use of ITNs/long-lasting insecticidal nets (LLINs).


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Mosquiteros Tratados con Insecticida , Malaria Falciparum/transmisión , Plasmodium falciparum , Esporozoítos , Animales , Anopheles/clasificación , Conducta Alimentaria , Femenino , Humanos , Insectos Vectores/clasificación , Kenia
15.
Parasit Vectors ; 7: 380, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25141761

RESUMEN

BACKGROUND: It has been speculated that widespread and sustained use of insecticide treated bed nets (ITNs) for over 10 years in Asembo, western Kenya, may have selected for changes in the location (indoor versus outdoor) and time (from late night to earlier in the evening) of biting of the predominant species of human malaria vectors (Anopheles funestus, Anopheles gambiae sensu stricto, and Anopheles arabiensis). METHODS: Mosquitoes were collected by human landing catches over a six week period in June and July, 2011, indoors and outdoors from 17 h to 07 h, in 75 villages in Asembo, western Kenya. Collections were separated by hour of the night, and mosquitoes were identified to species and tested for sporozoite infection with Plasmodium falciparum. A subset was dissected to determine parity. Human behavior (time going to bed and rising, time spent indoors and outdoors) was quantified by cross-sectional survey. Data from past studies of a similar design and in nearby settings, but conducted before the ITN scale up commenced in the early 2000s, were compared with those from the present study. RESULTS: Of 1,960 Anopheles mosquitoes collected in 2011, 1,267 (64.6%) were morphologically identified as An. funestus, 663 (33.8%) as An. gambiae sensu lato (An. gambiae s.s. and An. arabiensis combined), and 30 (1.5%) as other anophelines. Of the 663 An. gambiae s.l. collected, 385 were successfully tested by PCR among which 235 (61.0%) were identified as An. gambiae s.s. while 150 (39.0%) were identified as An. arabiensis. Compared with data collected before the scale-up of ITNs, daily entomological inoculation rates (EIRs) were consistently lower for An. gambiae s.l. (indoor EIR = 0.432 in 1985-1988, 0.458 in 1989-1990, 0.023 in 2011), and An. arabiensis specifically (indoor EIR = 0.532 in 1989-1990, 0.039 in 2009, 0.006 in 2011) but not An. funestus (indoor EIR = 0.029 in 1985-1988, 0.147 in 1989-1990, 0.010 in 2009 and 0.103 in 2011). Sporozoite rates were lowest in 2009 but rose again in 2011. Compared with data collected before the scale-up of ITNs, An. arabiensis and An. funestus were more likely to bite outdoors and/or early in the evening (p < 0.001 for all comparisons). However, when estimates of human exposure that would occur indoors (πi) or while asleep (πs) in the absence of an ITN were generated based on human behavioral patterns, the changes were modest with >90% of exposure of non-ITN users to mosquito bites occurring while people were indoors in all years. The proportion of bites occurring among non-ITN users while they were asleep was ≥90% for all species except for An. arabiensis. For this species, 97% of bites occurred while people were asleep in 1989-1990 while in 2009 and 2011, 80% and 84% of bites occurred while people were asleep for those not using ITNs. Assuming ITNs prevent a theoretical maximum of 93.7% of bites, it was estimated that 64-77% of bites would have occurred among persons using nets while they were asleep in 1989-1990, while 20-52% of bites would have occurred among persons using nets while they were asleep in 2009 and 2011. CONCLUSIONS: This study found no evidence to support the contention that populations of Anopheles vectors of malaria in Asembo, western Kenya, are exhibiting departures from the well-known pattern of late night, indoor biting characteristic of these typically highly anthropophilic species. While outdoor, early evening transmission likely does occur in western Kenya, the majority of transmission still occurs indoors, late at night. Therefore, malaria control interventions such as ITNs that aim to reduce indoor biting by mosquitoes should continue to be prioritized.


Asunto(s)
Vivienda , Mordeduras y Picaduras de Insectos/prevención & control , Insectos Vectores , Mosquiteros Tratados con Insecticida , Malaria/transmisión , Animales , Anopheles/parasitología , Anopheles/fisiología , Conducta Alimentaria , Humanos , Insectos Vectores/parasitología , Insecticidas , Kenia , Malaria/prevención & control , Control de Mosquitos/métodos , Factores de Tiempo
16.
Am J Trop Med Hyg ; 88(2): 301-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23249685

RESUMEN

The human landing catch (HLC) has long been the gold standard for estimating malaria transmission by mosquitoes, but has come under scrutiny because of ethical concerns of exposing collectors to infectious bites. We estimated the incidence of Plasmodium falciparum malaria infection in a cohort of 152 persons conducting HLCs and compared it with that of 147 non-collectors in western Kenya. Participants were presumptively cleared of malaria with Coartem™ (artemether-lumefantrine) and tested for malaria every 2 weeks for 12 weeks. The HLC collections were conducted four nights per week for six weeks. Collectors were provided chemoprophylaxis with Malarone™ (atovaquone-proguanil) during the six weeks of HLC activities and one week after HLC activities were completed. The incidence of malaria was 96.6% lower in collectors than in non-collectors (hazard ratio = 0.034, P < 0.0001). Therefore, with proper prophylaxis, concern about increased risk of malaria among collectors should not be an impediment to conducting HLC studies.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Adolescente , Adulto , Atovacuona/uso terapéutico , Estudios de Cohortes , Combinación de Medicamentos , Humanos , Incidencia , Kenia/epidemiología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Proguanil/uso terapéutico , Estudios Prospectivos , Factores de Riesgo , Encuestas y Cuestionarios , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA