Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Reprod ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501810

RESUMEN

Interferon-gamma (IFNG) is a pro-inflammatory cytokine secreted by the porcine conceptus (embryo and extra-embryonic membranes) during the peri-implantation period of pregnancy. IFNG modifies the endometrial inflammatory immune response and is required for the implantation and survival of the conceptus. It is not known how IFNG from the conceptus trophectoderm is transported across the endometrial luminal epithelium (LE). In the present study, immunofluorescence analyses detected immunoreactive IFNG protein in both the trophectoderm and endometrial LE on Day 15 of pregnancy, while our previous research localized IFNG mRNA only to conceptus trophectoderm. Using minced endometrial explants to disrupt the barrier posed by the intact endometrial LE, treatment with recombinant IFNG induced the expression of genes that were not induced when IFNG was infused into the uterine lumen in vivo by McLendon et al. (Biology of Reproduction. 2020;103(5):1018-1029). We hypothesized that during pregnancy extracellular vesicles (EVs) serve as intercellular signaling vehicles to transport conceptus-derived IFNG across the intact endometrial LE and into the stromal compartment of the uterus. Western blotting detected the presence of IFNG in EVs isolated from the uterine fluid of pregnant gilts, but not nonpregnant gilts. Real-time PCR demonstrated increased expression of IFNG-stimulated genes in EV-treated endometrial explants and EV-mediated IFNG transport was confirmed in whole uterine sections cultured with EVs from day 15 of pregnancy. These results suggest that EVs are involved in IFNG transport across the endometrial LE to enable paracrine communication between the conceptus and cells within the endometrial stroma.

2.
Biol Reprod ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836439

RESUMEN

In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require ATP. We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine (PCr) for ATP regeneration through the creatine (Cr)-creatine kinase (CK)-PCr pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses and immunofluorescence microscopy localized GAMT, CKM, and CKB proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium (LE) at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. GAMT protein is expressed in endometrial LE at the uterine-placental interface, but immunostaining is more intense in LE at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.

3.
Biol Reprod ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501845

RESUMEN

Fructose, the most abundant hexose sugar in fetal fluids and blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell specific manner: KHK-A protein was more abundant in trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in endoderm of Day 16 conceptuses and chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the TCA cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway and one-carbon metabolism required for conceptus development throughout pregnancy.

4.
Biol Reprod ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531778

RESUMEN

Lactate, an abundant molecule in fetal fluids and blood of mammalian species is often overlooked as a metabolic waste product generated during pregnancy. Most of the glucose and fructose consumed by ovine conceptuses is converted to lactate, but proteins involved in lactate metabolism and transport have not been investigated. This study characterized total lactate produced by ovine conceptuses throughout gestation, as well as expression of mRNAs and proteins involved in lactate metabolism. Lactate increased in abundance in the uterine lumen during the preimplantation period and was more abundant than pyruvate. The abundance of lactate in allantoic and amniotic fluids increased with advancing days of gestation and most abundant on Day 125 of pregnancy (P < 0.05). Lactate dehydrogenase (LDH) subunits A (converts pyruvate to lactate) and B (converts lactate to pyruvate) were expressed by conceptuses throughout gestation. Lactate is transported via monocarboxylic acid transporters SLC16A1 and SLC16A3, both of which were expressed by the conceptus throughout gestation. Additionally, the interplacentomal chorioallantois from Day 126 expressed SLC16A1 and SLC16A3 and transported lactate across the tissue. Hydrocarboxylic acid receptor 1 (HCAR1), a receptor for lactate, was localized to the uterine luminal and superficial glandular epithelia of pregnant ewes throughout gestation, and conceptus trophectoderm during the peri-implantation period of gestation. These results provide novel insights into the spatiotemporal profiles of enzymes, transporters, and receptor for lactate by ovine conceptuses throughout pregnancy.

5.
Adv Exp Med Biol ; 1446: 155-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625528

RESUMEN

The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.


Asunto(s)
Aminoácidos , Calidad de Vida , Gatos , Perros , Animales , Articulaciones , Matriz Ósea , Prolina , Mamíferos
6.
Biol Reprod ; 109(3): 309-318, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37418162

RESUMEN

Progesterone (P4), estradiol (E2), and expression of their receptors (PGR and ESR1, respectively) by cells of the uterus regulate reproductive performance of mammals through effects on secretion and transport of nutrients into the uterine lumen. This study investigated the effect of changes in P4, E2, PGR, and ESR1 on expression of enzymes for the synthesis and secretion of polyamines. Suffolk ewes (n = 13) were synchronized to estrus (Day 0) and then, on either Day 1 (early metestrus), Day 9 (early diestrus), or Day 14 (late diestrus) of the estrous cycle, maternal blood samples were collected, and ewes were euthanized before obtaining uterine samples and uterine flushings. Endometrial expression of MAT2B and SMS mRNAs increased in late diestrus (P < 0.05). Expression of ODC1 and SMOX mRNAs decreased from early metestrus to early diestrus, and expression of ASL mRNA was lower in late diestrus than in early metestrus (P < 0.05). Immunoreactive PAOX, SAT1, and SMS proteins were localized to uterine luminal, superficial glandular, and glandular epithelia, stromal cells, myometrium, and blood vessels. Concentrations of spermidine and spermine in maternal plasma decreased from early metestrus to early diestrus and decreased further in late diestrus (P < 0.05). The abundances of spermidine and spermine in uterine flushings were less in late diestrus than early metestrus (P < 0.05). These results indicate that synthesis and secretion of polyamines are affected by P4 and E2, as well as the expression of PGR and ESR1 in the endometria of cyclic ewes.


Asunto(s)
Estradiol , Progesterona , Femenino , Animales , Ovinos , Estradiol/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Rubor/metabolismo , Útero/metabolismo , Receptores de Progesterona/metabolismo , Mamíferos/metabolismo
7.
Biol Reprod ; 109(6): 954-964, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37676255

RESUMEN

Tissue-nonspecific alkaline phosphatase (TNSALP; encoded by ALPL gene) has a critical role in the regulation of phosphate homeostasis postnatally. However, the utero-placental expression of TNSALP and the role in phosphate transport in pregnancy is poorly understood. Estrous cycles of ewes were synchronized, and ewes were euthanized and hysterectomized on Days 1, 9, or 14 of the estrous cycle or bred to fertile rams and euthanized and hysterectomized on Days 9, 12, 17, 30, 50, 70, 90, 110, or 125 of pregnancy. The expression of ALPL mRNA, immunolocalization of TNSALP protein, and quantification and localization of TNSALP enzymatic activity was performed on ovine endometria and placentomes. Day of the estrous cycle did not alter ALPL mRNA expression or enzymatic activity of TNSALP. TNSALP protein localized to uterine epithelial and stromal cells, blood vessels, myometrium, caruncular, and cotyledonary stroma. TNSALP activity was localized to uterine epithelia, blood vessels, caruncular stroma (from Day 70 of gestation), and the apical surface of chorionic epithelia (from Day 50 of gestation). TNSALP protein and activity localized to the apical surface of uterine epithelia during the estrous cycle and in early pregnancy. Endometrial TNSALP enzymatic activity was downregulated on Days 17 and 30 of gestation (P < 0.05). Expression of ALPL mRNA decreased in late gestation in endometria and placentomes (P < 0.05). TNSALP activity peaked in placentomes on Days 70 and 90 of gestation. Collectively, these results suggest a potential role of TNSALP in the regulation of phosphate transport and homeostasis at the maternal-conceptus interface in ruminants.


Asunto(s)
Fosfatasa Alcalina , Placenta , Embarazo , Ovinos , Animales , Femenino , Masculino , Placenta/metabolismo , Fosfatasa Alcalina/metabolismo , Útero/metabolismo , Endometrio/metabolismo , Oveja Doméstica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fosfatos/metabolismo
8.
Biol Reprod ; 109(1): 107-118, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37171613

RESUMEN

The placenta requires high levels of adenosine triphosphate to maintain a metabolically active state throughout gestation. The creatine-creatine kinase-phosphocreatine system is known to buffer adenosine triphosphate levels; however, the role(s) creatine-creatine kinase-phosphocreatine system plays in uterine and placental metabolism throughout gestation is poorly understood. In this study, Suffolk ewes were ovariohysterectomized on Days 30, 50, 70, 90, 110 and 125 of gestation (n = 3-5 ewes/per day, except n = 2 on Day 50) and uterine and placental tissues subjected to analyses to measure metabolites, mRNAs, and proteins related to the creatine-creatine kinase-phosphocreatine system. Day of gestation affected concentrations and total amounts of guanidinoacetate and creatine in maternal plasma, amniotic fluid and allantoic fluid (P < 0.05). Expression of mRNAs for arginine:glycine amidinotransferase, guanidinoacetate methyltransferase, creatine kinase B, and solute carrier 16A12 in endometria and for arginine:glycine amidinotransferase and creatine kinase B in placentomes changed significantly across days of gestation (P < 0.05). The arginine:glycine amidinotransferase protein was more abundant in uterine luminal epithelium on Days 90 and 125 compared to Days 30 and 50 (P < 0.01). The chorionic epithelium of placentomes expressed guanidinoacetate methyltransferase and solute carrier 6A13 throughout gestation. Creatine transporter (solute carrier 6A8) was expressed by the uterine luminal epithelium and trophectoderm of placentomes throughout gestation. Creatine kinase (creatine kinase B and CKMT1) proteins were localized primarily to the uterine luminal epithelium and to the placental chorionic epithelium of placentomes throughout gestation. Collectively, these results demonstrate cell-specific and temporal regulation of components of the creatine-creatine kinase-phosphocreatine system that likely influence energy homeostasis for fetal-placental development.


Asunto(s)
Creatina , Placenta , Embarazo , Femenino , Animales , Ovinos , Placenta/metabolismo , Creatina/metabolismo , Guanidinoacetato N-Metiltransferasa/metabolismo , Fosfocreatina/metabolismo , Creatina Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Arginina
9.
Reproduction ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112573

RESUMEN

What we understand about early stages of placentation in cattle is based on an elegant series of electron microscopic images that provide exquisite detail, but limited appreciation for the microanatomy across the utero-placental interface. In order to achieve a global perspective on the histology of bovine placentation during critical early stages of gestation, i.e., days 21, 31, 40, and 67, we performed immunohistochemistry to detect cell-specific expression of pregnancy-associated glycoprotein (PAG), cytokeratin, epithelial (E)-cadherin, and serine hydroxymethyltransferase 2 (SHMT2) at the intact utero-placental interface. Key findings from the immunohistochemical analyses are that there are: (1) PAG-positive cells with a single nucleus within the uterine luminal epithelial (LE) cells; (2) PAG-positive cells with two nuclei in the LE; (3) PAG-positive syncytial cells with more than three nuclei in the LE; (4) LE cells that are dissociated from one another and dissociated from the basement membrane in regions of syncytialization within the LE layer; (5) replacement of the mononuclear LE with a multi-layer thick population of PAG-positive cells invading into the uterine stroma of caruncles, but not into the stroma of intercaruncular endometrium; and (6) PAG-, E-cadherin- and SHMT2-positive mononuclear cells at the leading edge of developing cotyledonary villi that eventually represent the majority of the epithelial surface separating caruncular stroma from cotyledonary stroma. Finally, the utero-placental interface of ruminants is not always uniform across a single cross-section of a site of placentation which allows different conclusions to be made depending on the part of the utero-placental interface being examined.

10.
Mol Reprod Dev ; 90(7): 684-696, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35466463

RESUMEN

Across mammalian species, it has been demonstrated that sex influences birth weight, with males being heavier than females; a characteristic that can be observed from early gestation. Male piglets are more likely to be stillborn and have greater preweaning mortality than their female littermates, despite the additional maternal investment into male fetal growth. Given the conserved nature of the genome between the sexes, it is hypothesized that these developmental differences between males and females are most likely orchestrated by differential placental adaptation. This review summarizes the current understanding of fetal sex-specific differences in placental and endometrial structure and function, with an emphasis on pathways found to be differentially regulated in the pig including angiogenesis, apoptosis, and proliferation. Given the importance of piglet sex in agricultural enterprises, and the potential for skewed litter sex ratios, it is imperative to improve understanding of the relationship between fetal sex and molecular signaling in both the placenta and endometria across gestation.


Asunto(s)
Placenta , Placentación , Embarazo , Porcinos , Animales , Femenino , Masculino , Caracteres Sexuales , Fisiología Comparada , Desarrollo Fetal/fisiología , Mamíferos
11.
Mol Reprod Dev ; 90(7): 673-683, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460118

RESUMEN

Conceptus elongation and early placentation involve growth and remodeling that requires proliferation and migration of cells. This demands conceptuses expend energy before establishment of a placenta connection and when they are dependent upon components of histotroph secreted or transported into the uterine lumen from the uterus. Glucose and fructose, as well as many amino acids (including arginine, aspartate, glutamine, glutamate, glycine, methionine, and serine), increase in the uterine lumen during the peri-implantation period. Glucose and fructose enter cells via their transporters, SLC2A, SLC2A3, and SLC2A8, and amino acids enter the cells via specific transporters that are expressed by the conceptus trophectoderm. However, porcine conceptuses develop rapidly through extensive cellular proliferation and migration as they elongate and attach to the uterine wall resulting in increased metabolic demands. Therefore, coordination of multiple metabolic biosynthetic pathways is an essential aspect of conceptus development. Oxidative metabolism primarily occurs through the tricarboxylic acid (TCA) cycle and the electron transport chain, but proliferating and migrating cells, like the trophectoderm of pigs, enhance aerobic glycolysis. The glycolytic intermediates from glucose can then be shunted into the pentose phosphate pathway and one-carbon metabolism for the de novo synthesis of nucleotides. A result of aerobic glycolysis is limited availability of pyruvate for maintaining the TCA cycle, and trophectoderm cells likely replenish TCA cycle metabolites primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. The synthesis of ATP, nucleotides, amino acids, and fatty acids through these biosynthetic pathways is essential to support elongation, migration, hormone synthesis, implantation, and early placental development of conceptuses.


Asunto(s)
Glutamina , Placenta , Porcinos , Embarazo , Femenino , Animales , Placenta/metabolismo , Glutamina/metabolismo , Útero/metabolismo , Aminoácidos/metabolismo , Redes y Vías Metabólicas , Fructosa/metabolismo , Glucosa/metabolismo , Nucleótidos/metabolismo
12.
Amino Acids ; 55(1): 125-137, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36383272

RESUMEN

Highly proliferative cells rely on one carbon (1C) metabolism for production of formate required for synthesis of purines and thymidine for nucleic acid synthesis. This study was to determine if extracellular serine and/or glucose and fructose contribute the production of formate in ovine conceptuses. Suffolk ewes (n = 8) were synchronized to estrus, bred to fertile rams, and conceptuses were collected on Day 17 of gestation. Conceptuses were either snap frozen in liquid nitrogen (n = 3) or placed in culture in medium (n = 5) containing either: 1) 4 mM D-glucose + 2 mM [U-13C]serine; 2) 6 mM glycine + 4 mM D-glucose + 2 mM [U-13C]serine; 3) 4 mM D-fructose + 2 mM [U-13C]serine; 4) 6 mM glycine + 4 mM D-fructose + 2 mM [U-13C]serine; 5) 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine; or 6) 6 mM glycine + 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine. After 2 h incubation, conceptuses in their respective culture medium were homogenized and the supernatant analyzed for 12C- and 13C-formate by gas chromatography and amino acids by high performance liquid chromatography. Ovine conceptuses produced both 13C- and 12C-formate, indicating that the [U-13C]serine, glucose, and fructose were utilized to generate formate, respectively. Greater amounts of 12C-formate than 13C-formate were produced, indicating that the ovine conceptus utilized more glucose and fructose than serine to produce formate. This study is the first to demonstrate that both 1C metabolism and serinogenesis are active metabolic pathways in ovine conceptuses during the peri-implantation period of pregnancy, and that hexose sugars are the preferred substrate for generating formate required for nucleotide synthesis for proliferating trophectoderm cells.


Asunto(s)
Interferón Tipo I , Serina , Embarazo , Ovinos , Animales , Femenino , Masculino , Glucosa , Fructosa , Oveja Doméstica/metabolismo , Glicina , Formiatos
13.
Reprod Fertil Dev ; 36(2): 93-111, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064193

RESUMEN

Mammals differ regarding their placentae, but in all species placental trophoblasts interact intimately with the uterine endometrium to mediate the transfer of nutrients from the mother to the embryo/fetus through the closely juxtaposed microcirculatory systems of the uterus and placenta. Placentation in ruminants is intermediate between the non-invasive type, as observed in the epitheliochorial placenta of pigs, and the invasive type, as observed in the haemochorial placentae of mice and humans. In ruminants, placental trophoblast cells invade uterine endometrial tissue, but invasion is believed to be limited to the endometrial luminal epithelium (LE). In the LE there are varying degrees of syncytialisation among species, with syncytialisation being more extensive in sheep than cows. The hallmarks of placentation in ruminants include: (1) an extended period in which conceptuses (embryos and associated placental membranes) elongate and must be supported by secretions (histotroph) from the uterus; (2) a cascade involving an array of adhesion molecules that includes integrin-mediated attachment of the conceptus trophoblast to the endometrial LE for implantation; (3) syncytialisation of the developing early placenta, a process for which there is currently limited understanding; and (4) development of placentomes that define the cotyledonary placentae of cows and sheep, and provide haemotrophic support of fetal development.


Asunto(s)
Placenta , Placentación , Humanos , Embarazo , Bovinos , Femenino , Ovinos , Porcinos , Animales , Microcirculación , Útero , Implantación del Embrión , Endometrio/química , Rumiantes
14.
Biol Reprod ; 107(3): 823-833, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552608

RESUMEN

During the peri-implantation period of pregnancy, the trophectoderm of pig conceptuses utilize glucose via multiple biosynthetic pathways to support elongation and implantation, resulting in limited availability of pyruvate for metabolism via the TCA cycle. Therefore, we hypothesized that porcine trophectoderm cells replenish tricarboxylic acid (TCA) cycle intermediates via a process known as anaplerosis and that trophectoderm cells convert glutamine to α-ketoglutarate, a TCA cycle intermediate, through glutaminolysis. Results demonstrate: (1) that expression of glutaminase (GLS) increases in trophectoderm and glutamine synthetase (GLUL) increases in extra-embryonic endoderm of conceptuses, suggesting that extra-embryonic endoderm synthesizes glutamine, and trophectoderm converts glutamine into glutamate; and (2) that expression of glutamate dehydrogenase 1 (GLUD1) decreases and expression of aminotransferases including PSAT1 increase in trophectoderm, suggesting that glutaminolysis occurs in the trophectoderm through the GLS-aminotransferase pathway during the peri-implantation period. We then incubated porcine conceptuses with 13C-glutamine in the presence or absence of glucose in the culture media and then monitored the movement of glutamine-derived carbons through metabolic intermediates within glutaminolysis and the TCA cycle. The 13C-labeled carbons were accumulated in glutamate, α-ketoglutarate, succinate, malate, citrate, and aspartate in both the presence and absence of glucose in the media, and the accumulation of 13C-labeled carbons significantly increased in the absence of glucose in the media. Collectively, our results indicate that during the peri-implantation period of pregnancy, the proliferating and migrating trophectoderm cells of elongating porcine conceptuses utilize glutamine via glutaminolysis as an alternate carbon source to maintain TCA cycle flux.


Asunto(s)
Glutamina , Ácidos Cetoglutáricos , Animales , Isótopos de Carbono , Femenino , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Embarazo , Ácido Pirúvico , Porcinos
15.
Biol Reprod ; 107(5): 1279-1295, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35871545

RESUMEN

The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared with MAO-control (3/10 vs. 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared with conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.


Asunto(s)
Implantación del Embrión , Epigénesis Genética , Embarazo , Ovinos , Animales , Femenino , Implantación del Embrión/fisiología , Biosíntesis de Proteínas , Embrión de Mamíferos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología
16.
Biol Reprod ; 106(5): 865-878, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35098299

RESUMEN

Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate the expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75-mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8-15, and twice daily intrauterine injections (25 µg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11-15, resulting in four treatment groups: (i) P4 + CX; (ii) P4 + IFNT; (iii) RU486 + P4 + CX; or (iv) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate the expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.


Asunto(s)
Agmatina , Interferón Tipo I , Agmatina/metabolismo , Agmatina/farmacología , Animales , Aceite de Maíz/metabolismo , Endometrio/metabolismo , Femenino , Interferón Tipo I/metabolismo , Mifepristona , Poliaminas/metabolismo , Embarazo , Proteínas Gestacionales , Progesterona/metabolismo , Proteínas/metabolismo , Putrescina , ARN Mensajero/metabolismo , Ovinos , Oveja Doméstica , Útero/metabolismo
17.
Biol Reprod ; 106(5): 888-899, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35134855

RESUMEN

Given recent reports of expression of postnatal mineral transport regulators at the maternal-conceptus interface during the peri-implantation period, this study tested the hypothesis that progesterone (P4) and interferon tau (IFNT) regulate phosphate, calcium, and vitamin D signaling in the ovine endometrium. Mature Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on day 7 of the estrous cycle. Ewes received daily intramuscular injections of 50 mg of P4 in corn oil vehicle and 75 mg of progesterone receptor antagonist (RU486) in corn oil from days 8 to 15, and twice-daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/day) from days 11 to 15 resulting in four treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT. On day 16, ewes were hysterectomized. RU486 + P4 + CX treated ewes had lower concentrations of 25 (OH) D in plasma than P4 + CX treated ewes (P < 0.05). Endometria from ewes treated with IFNT had greater expression of FGF23 (P < 0.01), S100A9 (P < 0.05), and S100A12 (P = 0.05) mRNAs and lower expression of ADAM10 mRNA (P < 0.01) than of ewes treated with CX proteins. Expression of FGF23 mRNA was greater in endometria of ewes that received RU486 + P4 + IFNT than in ewes that received RU486 + P4 + CX (hormone × protein interaction, P < 0.05). The expression of S100G mRNA was greater in endometria of ewes that received P4 + IFNT compared to ewes that received RU486 + P4 + IFNT (P < 0.05; hormone × protein interaction, P < 0.01). These data implicate P4 and IFNT in the regulation of phosphate, calcium, and vitamin D signaling during the peri-implantation period of pregnancy and provide a platform for continued mechanistic investigations.


Asunto(s)
Interferón Tipo I , Progesterona , Animales , Calcio/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/farmacología , Endometrio/metabolismo , Femenino , Interferón Tipo I/metabolismo , Mifepristona/farmacología , Fosfatos/metabolismo , Fosfatos/farmacología , Embarazo , Proteínas Gestacionales , Progesterona/metabolismo , Progesterona/farmacología , Proteínas/metabolismo , ARN Mensajero/metabolismo , Ovinos , Oveja Doméstica , Vitamina D/farmacología
18.
Biol Reprod ; 107(6): 1528-1539, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36054379

RESUMEN

Ruminant conceptuses that elongate and attach to the uterine luminal epithelium (LE) to establish pregnancy require a large amount of adenosine triphosphate (ATP). The creatine (Cr)-creatine kinase (CK)-phosphocreatine (PCr) system re-generates ATP in dividing and migrating cells such as the conceptus trophectoderm cells. However, little is known about metabolism of Cr within uterine and conceptus tissues in livestock species during early gestation. In this study, Suffolk ewes were ovariohysterectomized on Days 9, 12, 15, 16, 17, 18, 20, or 21 of pregnancy (n = 2-5 animals/per day) to investigate metabolites, mRNAs, and proteins of the Cr-CK-PCr system at uterine-conceptus interface. Amounts of Cr and guanidinoacetate (GA) in uterine flushings increased between Days 12 and 17 of pregnancy. Endometrial expression of mRNAs for GA formation (AGAT), Cr synthesis (GAMT), and Cr/PCr utilization (CKB) was greater on Days 17 and 21 than on Days 9 and 12 of pregnancy. Immunoreactive AGAT was detected in uteri only on Day 21 but not in uteri or conceptuses at earlier days of pregnancy. GAMT, SLC6A8, and CKs were expressed in uterine luminal and glandular epithelia. Immunoreactive CKs (CKB, CKM, and CKMT1) appeared greater on Day 9 than Day 17 of pregnancy. Immunoreactive GAMT and CKs appeared greater in trophectoderm of conceptuses on Day 20 than on Day 15 of pregnancy, whereas the opposite was observed for that of SLC6A8. This study provides insights into cell-, tissue-, and time-specific metabolism of Cr at the uterine-conceptus interface suggesting a role for the Cr-CK-PCr system in ovine conceptus development and implantation.


Asunto(s)
Creatina , Proteínas Gestacionales , Embarazo , Ovinos , Animales , Femenino , Creatina/metabolismo , Proteínas Gestacionales/metabolismo , Útero/metabolismo , Implantación del Embrión , Endometrio/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo
19.
Biol Reprod ; 107(4): 1084-1096, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35835585

RESUMEN

Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that (1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); (2) incorporation of fructose and glucose at 4 mM each into the PC by Day 16 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); (3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and (4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Fructosa , Animales , Femenino , Fructoquinasas , Glucosa , Lactatos , Lípidos , Pentosas , Embarazo , Piruvatos , Ovinos , Oveja Doméstica
20.
Biol Reprod ; 106(6): 1126-1142, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35191486

RESUMEN

This study aimed to determine whether the acceleration of conceptus development induced by the administration of exogenous progesterone (P4) during the preimplantation period of pregnancy alters calcium, phosphate, and vitamin D signaling at the maternal-conceptus interface. Suffolk ewes (n = 48) were mated to fertile rams and received daily intramuscular injections of either corn oil (CO) vehicle or 25 mg of progesterone in CO (P4) for the first 8 days of pregnancy and hysterectomized on either Day 9 (CO, n = 5; P4, n = 6), 12 (CO, n = 9; P4, n = 4) or 125 (CO, n = 14; P4, n = 10) of gestation. The expression of S100A12 (P < 0.05) and fibroblast growth factor receptor (FGFR2) (P < 0.01) messenger RNAs (mRNAs) was lower in endometria from P4-treated ewes on Day 12. The expression of ADAM10 (P < 0.05) mRNA was greater in endometria from P4-treated ewes on Day 125. The expression of ADAM10 (P < 0.01), FGFR2 (P < 0.05), solute carrier (SLC)20A1 (P < 0.05), TRPV5 (P < 0.05), and TRPV6 (P < 0.01) mRNAs was greater, but KL mRNA expression was lower (P < 0.05) in placentomes from P4-treated ewes at Day 125. There was lower endometrial and greater placentomal expression of mRNAs involved in mineral metabolism and transport in twin compared to singleton pregnancies. Further, the expression of mRNAs involved in mineral metabolism and transport was greater in P4-treated twin placentomes. KL, FGF23, vitamin D receptor (VDR), S100A9, S100A12, S100G, and CYP27B1 proteins were immunolocalized in endometria and placentomes. Exogenous P4 in early pregnancy altered the expression of regulators of calcium, phosphate, and vitamin D on Day 125 of pregnancy indicating a novel effect of P4 on mineral transport at the maternal-conceptus interface.


Asunto(s)
Calcio , Progesterona , Animales , Calcio/metabolismo , Endometrio/metabolismo , Femenino , Masculino , Minerales/metabolismo , Minerales/farmacología , Fosfatos/metabolismo , Fosfatos/farmacología , Placenta/metabolismo , Embarazo , Progesterona/metabolismo , ARN Mensajero/metabolismo , Proteína S100A12/metabolismo , Proteína S100A12/farmacología , Ovinos , Oveja Doméstica , Vitamina D/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA