Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
N Engl J Med ; 386(1): 47-56, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34986286

RESUMEN

BACKGROUND: Treponema pallidum subspecies pertenue causes yaws. Strategies to better control, eliminate, and eradicate yaws are needed. METHODS: In an open-label, cluster-randomized, community-based trial conducted in a yaws-endemic area of Papua New Guinea, we randomly assigned 38 wards (i.e., clusters) to receive one round of mass administration of azithromycin followed by two rounds of target treatment of active cases (control group) or three rounds of mass administration of azithromycin (experimental group); round 1 was administered at baseline, round 2 at 6 months, and round 3 at 12 months. The coprimary end points were the prevalence of active cases of yaws, confirmed by polymerase-chain-reaction assay, in the entire trial population and the prevalence of latent yaws, confirmed by serologic testing, in a subgroup of asymptomatic children 1 to 15 years of age; prevalences were measured at 18 months, and the between-group differences were calculated. RESULTS: Of the 38 wards, 19 were randomly assigned to the control group (30,438 persons) and 19 to the experimental group (26,238 persons). A total of 24,848 doses of azithromycin were administered in the control group (22,033 were given to the participants at round 1 and 207 and 2608 were given to the participants with yaws-like lesions and their contacts, respectively, at rounds 2 and 3 [combined]), and 59,852 doses were administered in the experimental group. At 18 months, the prevalence of active yaws had decreased from 0.46% (102 of 22,033 persons) at baseline to 0.16% (47 of 29,954 persons) in the control group and from 0.43% (87 of 20,331 persons) at baseline to 0.04% (10 of 25,987 persons) in the experimental group (relative risk adjusted for clustering, 4.08; 95% confidence interval [CI], 1.90 to 8.76). The prevalence of other infectious ulcers decreased to a similar extent in the two treatment groups. The prevalence of latent yaws at 18 months was 6.54% (95% CI, 5.00 to 8.08) among 994 children in the control group and 3.28% (95% CI, 2.14 to 4.42) among 945 children in the experimental group (relative risk adjusted for clustering and age, 2.03; 95% CI, 1.12 to 3.70). Three cases of yaws with resistance to macrolides were found in the experimental group. CONCLUSIONS: The reduction in the community prevalence of yaws was greater with three rounds of mass administration of azithromycin at 6-month intervals than with one round of mass administration of azithromycin followed by two rounds of targeted treatment. Monitoring for the emergence and spread of antimicrobial resistance is needed. (Funded by Fundació "la Caixa" and others; ClinicalTrials.gov number, NCT03490123.).


Asunto(s)
Antibacterianos/administración & dosificación , Azitromicina/administración & dosificación , Administración Masiva de Medicamentos , Buba/tratamiento farmacológico , Adolescente , Niño , Preescolar , Farmacorresistencia Bacteriana , Femenino , Haemophilus ducreyi/aislamiento & purificación , Humanos , Lactante , Masculino , Papúa Nueva Guinea/epidemiología , Reacción en Cadena de la Polimerasa , Prevalencia , Úlcera Cutánea/microbiología , Treponema/aislamiento & purificación , Buba/epidemiología
2.
Emerg Infect Dis ; 27(4): 1123-1132, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33754988

RESUMEN

We confirmed endemicity and autochthonous transmission of yaws in Liberia after a population-based, community-led burden estimation (56,825 participants). Serologically confirmed yaws was rare and focal at population level (24 cases; 2.6 [95% CI 1.4-3.9] cases/10,000 population) with similar clinical epidemiology to other endemic countries in West Africa. Unsupervised classification of spatially referenced case finding data indicated that yaws was more likely to occur in hard-to-reach communities; healthcare-seeking was low among communities, and clinical awareness of yaws was low among healthcare workers. We recovered whole bacterial genomes from 12 cases and describe a monophyletic clade of Treponema pallidum subspecies pertenue, phylogenetically distinct from known TPE lineages, including those affecting neighboring nonhuman primate populations (Taï Forest, Côte d'Ivoire). Yaws is endemic in Liberia but exhibits low focal population prevalence with evidence of a historical genetic bottleneck and subsequent local expansion. Reporting gaps appear attributable to challenging epidemiology and low disease awareness.


Asunto(s)
Buba , Animales , Côte d'Ivoire , Genómica , Humanos , Liberia , Treponema pallidum
3.
Mol Ecol ; 26(7): 1991-2005, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27862555

RESUMEN

Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi.


Asunto(s)
Adaptación Fisiológica/genética , Cryptococcus gattii/genética , Cryptococcus neoformans/genética , Bosques , Meningitis Criptocócica/microbiología , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Genética de Población , Genoma Fúngico , Genómica , Humanos , Meningitis Criptocócica/epidemiología , Modelos Biológicos , Filogenia , Corteza de la Planta/microbiología , Polimorfismo de Nucleótido Simple , Microbiología del Suelo , Árboles/microbiología , Zambia
4.
Lancet Microbe ; 4(10): e770-e780, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37722404

RESUMEN

BACKGROUND: Syphilis is a sexually transmitted bacterial infection caused by Treponema pallidum subspecies pallidum. Since 2012, syphilis rates have risen dramatically in many high-income countries, including England. Although this increase in syphilis prevalence is known to be associated with high-risk sexual activity in gay, bisexual, and other men who have sex with men (GBMSM), cases are rising in heterosexual men and women. The transmission dynamics within and between sexual networks of GBMSM and heterosexual people are not well understood. We aimed to investigate if whole genome sequencing could be used to supplement or enhance epidemiological insights around syphilis transmission. METHODS: We linked national patient demographic, geospatial, and behavioural metadata to whole T pallidum genome sequences previously generated from patient samples collected from across England between Jan 1, 2012, and Oct 31, 2018, and performed detailed phylogenomic analyses. FINDINGS: Of 497 English samples submitted for sequencing, we recovered 240 genomes (198 from the UK Health Security Agency reference laboratory and 42 from other laboratories). Three duplicate samples (same patient and collection date) were included in the main phylogenies, but removed from further analyses of English populations, leaving 237 genomes. 220 (92·8%) of 237 samples were from men, nine (3·8%) were from women, and eight (3·4%) were of unknown gender. Samples were mostly from London (n=118 [49·8%]), followed by southeast England (n=29 [12·2%]), northeast England (n=24 [10·1%]), and southwest England (n=15 [6·3%]). 180 (76·0%) of 237 genomes came from GBMSM, compared with 25 (10·5%) from those identifying as men who have sex with women, 15 (6·3%) from men with unrecorded sexual orientation, nine (3·8%) from those identifying as women who have sex with men, and eight (3·4%) from people of unknown gender and sexual orientation. Phylogenomic analysis and clustering revealed two dominant T pallidum sublineages in England. Sublineage 1 was found throughout England and across all patient groups, whereas sublineage 14 occurred predominantly in GBMSM older than 34 years and was absent from samples sequenced from the north of England. These different spatiotemporal trends, linked to demography or behaviour in the dominant sublineages, suggest they represent different sexual networks. By focusing on different regions of England we were able to distinguish a local heterosexual transmission cluster from a background of transmission in GBMSM. INTERPRETATION: These findings show that, despite extremely close genetic relationships between T pallidum genomes globally, genomics can still be used to identify putative transmission clusters for epidemiological follow-up. This could be of value for deconvoluting putative outbreaks and for informing public health interventions. FUNDING: Wellcome funding to the Sanger Institute, UK Research and Innovation, National Institute for Health and Care Research, European and Developing Countries Clinical Trials Partnership, and UK Health Security Agency.


Asunto(s)
Minorías Sexuales y de Género , Sífilis , Humanos , Masculino , Femenino , Sífilis/epidemiología , Homosexualidad Masculina , Inglaterra/epidemiología , Genómica
5.
Lancet Microbe ; 4(4): e255-e263, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801013

RESUMEN

BACKGROUND: Patients with prolonged hospitalisation have a significant risk of carriage of and subsequent infection with extended spectrum ß-lactamase (ESBL)-producing and carbapenemase-producing Klebsiella pneumoniae. However, the distinctive roles of the community and hospital environments in the transmission of ESBL-producing or carbapenemase-producing K pneumoniae remain elusive. We aimed to investigate the prevalence and transmission of K pneumoniae within and between the two tertiary hospitals in Hanoi, Viet Nam, using whole-genome sequencing. METHODS: We did a prospective cohort study of 69 patients in intensive care units (ICUs) from two hospitals in Hanoi, Viet Nam. Patients were included if they were aged 18 years or older, admitted for longer than the mean length of stay in their ICU, and cultured K pneumoniae from their clinical samples. Longitudinally collected samples from patients (collected weekly) and the ICU environment (collected monthly) were cultured on selective media, and whole-genome sequences from K pneumoniae colonies analysed. We did phylogenetic analyses and correlated phenotypic antimicrobial susceptibility testing with genotypic features of K pneumoniae isolates. We constructed transmission networks of patient samples, relating ICU admission times and locations with genetic similarity of infecting K pneumoniae. FINDINGS: Between June 1, 2017, and Jan 31, 2018, 69 patients were in the ICUs and eligible for inclusion, and a total of 357 K pneumoniae isolates were cultured and successfully sequenced. 228 (64%) of K pneumoniae isolates carried between two and four different ESBL-encoding and carbapenemase-encoding genes, with 164 (46%) isolates carrying genes encoding both, with high minimum inhibitory concentrations. We found a novel co-occurrence of blaKPC-2 and blaNDM-1 in 46·6% of samples from the globally successful ST15 lineage. Despite being physically and clinically separated, the two hospitals shared closely related strains carrying the same array of antimicrobial resistance genes. INTERPRETATION: These results highlight the high prevalence of ESBL-positive carbapenem-resistant K pneumoniae in ICUs in Viet Nam. Through studying K pneumoniae ST15 in detail, we showed how important resistance genes are contained within these strains that are carried broadly by patients entering the two hospitals directly or through referral. FUNDING: Medical Research Council Newton Fund, Ministry of Science and Technology, Wellcome Trust, Academy of Medical Sciences, Health Foundation, and National Institute for Health and Care Research Cambridge Biomedical Research Centre.


Asunto(s)
Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Vietnam/epidemiología , Estudios Prospectivos , Filogenia , Centros de Atención Terciaria
6.
Nat Microbiol ; 8(10): 1787-1798, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37770747

RESUMEN

Since 2016, Yemen has been experiencing the largest cholera outbreak in modern history. Multidrug resistance (MDR) emerged among Vibrio cholerae isolates from cholera patients in 2018. Here, to characterize circulating genotypes, we analysed 260 isolates sampled in Yemen between 2018 and 2019. Eighty-four percent of V. cholerae isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, sub-lineage T13, whereas 16% were non-toxigenic, from divergent non-7PET lineages. Treatment of severe cholera with macrolides between 2016 and 2019 coincided with the emergence and dominance of T13 subclones carrying an incompatibility type C (IncC) plasmid harbouring an MDR pseudo-compound transposon. MDR plasmid detection also in endemic non-7PET V. cholerae lineages suggested genetic exchange with 7PET epidemic strains. Stable co-occurrence of the IncC plasmid with the SXT family of integrative and conjugative element in the 7PET background has major implications for cholera control, highlighting the importance of genomic epidemiological surveillance to limit MDR spread.


Asunto(s)
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiología , Vibrio cholerae O1/genética , Yemen/epidemiología , Plásmidos/genética , Genómica
7.
Nat Commun ; 14(1): 6392, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872141

RESUMEN

Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa's most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures.


Asunto(s)
Infecciones por Salmonella , Salmonella typhimurium , Humanos , África del Sur del Sahara/epidemiología , Farmacorresistencia Microbiana , Genómica , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/genética
8.
Microb Genom ; 8(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35302438

RESUMEN

Members of the Klebsiella pneumoniae species complex, particularly K. pneumoniae subsp. pneumoniae are antimicrobial resistance (AMR) associated pathogens of global importance, and polyvalent vaccines targeting Klebsiella O-antigens are in development. Whole-genome sequencing has provided insight into O-antigen distribution in the K. pneumoniae species complex, as well as population structure and virulence determinants, but genomes from sub-Saharan Africa are underrepresented in global sequencing efforts. We therefore carried out a genomic analysis of extended-spectrum beta-lactamase (ESBL)-producing K. pneumoniae species complex isolates colonizing adults in Blantyre, Malawi. We placed these isolates in a global genomic context, and compared colonizing to invasive isolates from the main public hospital in Blantyre. In total, 203 isolates from stool and rectal swabs from adults were whole-genome sequenced and compared to a publicly available multicounty collection and previously sequenced Malawian and Kenyan isolates from blood or sterile sites. We inferred phylogenetic relationships and analysed the diversity of genetic loci linked to AMR, virulence, capsule and LPS O-antigen (O-types). We find that the diversity of Malawian K. pneumoniae subsp. pneumoniae isolates represents the species' population structure, but shows distinct local signatures concerning clonal expansions. Siderophore and hypermucoidy genes were more frequent in invasive versus colonizing isolates (present in 13 % vs 1 %) but still generally lacking in most invasive isolates. O-antigen population structure and distribution was similar in invasive and colonizing isolates, with O4 more common (14%) than in previously published studies (2-5 %). We conclude that host factors, pathogen opportunity or alternate virulence loci not linked to invasive disease elsewhere are likely to be the major determinants of invasive disease in Malawi. Distinct ST and O-type distributions in Malawi highlight the need to sample locations where the burden of invasive Klebsiella disease is greatest to robustly define secular trends in Klebsiella diversity to assist in the development of a useful vaccine. Colonizing and invasive isolates in Blantyre are similar, hence O-typing of colonizing Klebsiella isolates may be a rapid and cost-effective approach to describe global diversity and guide vaccine development.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Variación Antigénica , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Humanos , Kenia , Klebsiella , Infecciones por Klebsiella/epidemiología , Malaui/epidemiología , Pruebas de Sensibilidad Microbiana , Antígenos O , Filogenia , beta-Lactamasas/genética
9.
Nat Microbiol ; 7(10): 1593-1604, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36065064

RESUMEN

Drug-resistant bacteria of the order Enterobacterales which produce extended-spectrum beta-lactamase enzymes (ESBL-Enterobacterales, ESBL-E) are global priority pathogens. Antimicrobial stewardship interventions proposed to curb their spread include shorter courses of antimicrobials to reduce selection pressure but individual-level acquisition and selection dynamics are poorly understood. We sampled stool of 425 adults (aged 16-76 years) in Blantyre, Malawi, over 6 months and used multistate modelling and whole-genome sequencing to understand colonization dynamics of ESBL-E. Models suggest a prolonged effect of antimicrobials such that truncating an antimicrobial course at 2 days has a limited effect in reducing colonization. Genomic analysis shows largely indistinguishable diversity of healthcare-associated and community-acquired isolates, hence some apparent acquisition of ESBL-E during hospitalization may instead represent selection from a patient's microbiota by antimicrobial exposure. Our approach could help guide stewardship protocols; interventions that aim to review and truncate courses of unneeded antimicrobials may be of limited use in preventing ESBL-E colonization.


Asunto(s)
Gammaproteobacteria , beta-Lactamasas , Adulto , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Heces/microbiología , Humanos , Intestinos , beta-Lactamasas/genética
10.
Lancet Microbe ; 3(6): e417-e426, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35659903

RESUMEN

BACKGROUND: The incidence of syphilis has increased markedly in the past decade in high-income countries, including Australia. To date, however, genomic studies of Treponema pallidum have focused mainly on the northern hemisphere. Here, we aimed to characterise the lineages of T pallidum driving the current syphilis epidemic in Australia. METHODS: In this genomic epidemiological analysis, using phylogenomic and phylodynamic analyses, we analysed 456 high-quality T pallidum genomes collected from clinical samples in Australia between Oct 19, 2005, and Dec 31, 2020, and contextualised this information with publicly available sequence data. We also performed detailed genomic characterisation of putative antimicrobial resistance determinants, in addition to correlating single-locus typing of the TP0548 allele with the T pallidum phylogeny. FINDINGS: Phylogenomic analyses identified four major sublineages circulating in Australia and globally, two belonging to the SS14 lineage, and two belonging to the Nichols lineage. Australian sublineages were further delineated into twelve subgroups, with five of the six largest subgroups associated with men who have sex with men, and the sixth lineage was predominantly associated with heterosexual people. Most Australian T pallidum genomes (398 [87%] of 456) were genotypically macrolide resistant, and TP0548 typing correlated significantly with T pallidum genomic subgroups. INTERPRETATION: These findings show that the current syphilis epidemic in Australia is driven by multiple lineages of T pallidum, rather than one distinct outbreak. Major subgroups of T pallidum in Australia have emerged within the past 30 years, are closely related to global lineages, and circulate across different sexual networks. In conjunction with improved testing and treatment, these data could better inform the control of syphilis in Australia. FUNDING: National Health and Medical Research Council, Australian Research Council.


Asunto(s)
Minorías Sexuales y de Género , Sífilis , Antibacterianos , Australia/epidemiología , Brotes de Enfermedades , Genómica , Homosexualidad Masculina , Humanos , Masculino , Sífilis/epidemiología , Treponema pallidum/genética
11.
Nat Microbiol ; 6(12): 1549-1560, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819643

RESUMEN

Syphilis, which is caused by the sexually transmitted bacterium Treponema pallidum subsp. pallidum, has an estimated 6.3 million cases worldwide per annum. In the past ten years, the incidence of syphilis has increased by more than 150% in some high-income countries, but the evolution and epidemiology of the epidemic are poorly understood. To characterize the global population structure of T. pallidum, we assembled a geographically and temporally diverse collection of 726 genomes from 626 clinical and 100 laboratory samples collected in 23 countries. We applied phylogenetic analyses and clustering, and found that the global syphilis population comprises just two deeply branching lineages, Nichols and SS14. Both lineages are currently circulating in 12 of the 23 countries sampled. We subdivided T. p. pallidum into 17 distinct sublineages to provide further phylodynamic resolution. Importantly, two Nichols sublineages have expanded clonally across 9 countries contemporaneously with SS14. Moreover, pairwise genome analyses revealed examples of isolates collected within the last 20 years from 14 different countries that had genetically identical core genomes, which might indicate frequent exchange through international transmission. It is striking that most samples collected before 1983 are phylogenetically distinct from more recently isolated sublineages. Using Bayesian temporal analysis, we detected a population bottleneck occurring during the late 1990s, followed by rapid population expansion in the 2000s that was driven by the dominant T. pallidum sublineages circulating today. This expansion may be linked to changing epidemiology, immune evasion or fitness under antimicrobial selection pressure, since many of the contemporary syphilis lineages we have characterized are resistant to macrolides.


Asunto(s)
Filogenia , Sífilis/microbiología , Treponema pallidum/aislamiento & purificación , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Genoma Bacteriano , Humanos , Macrólidos/farmacología , Treponema pallidum/clasificación , Treponema pallidum/genética , Treponema pallidum/fisiología
12.
Elife ; 102021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33650490

RESUMEN

COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1167 residents from 337 care homes were identified from a dataset of 6600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Casas de Salud , SARS-CoV-2/genética , Anciano de 80 o más Años , COVID-19/virología , Brotes de Enfermedades , Inglaterra/epidemiología , Femenino , Humanos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional , Transmisión de Enfermedad Infecciosa de Profesional a Paciente , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia , Factores de Tiempo
13.
J Gen Virol ; 91(Pt 1): 68-73, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19759242

RESUMEN

Hepatitis B virus (HBV) vaccine and diagnostic escape mutants are a growing concern. The principle target of detection, hepatitis B surface antigen (HBsAg), encoded by S, is completely overlapped by the reverse transcriptase encoding P. With the increased incidence of nucleos(t)ide analogue resistance altering P, the concurrent impact on S must be assessed. HBV DNA from 59 HBsAg-positive plasma samples was sequenced across the polymerase/surface region and the amino acid sequence of HBsAg was inferred. ELISAs were formatted containing individually bound monoclonal antibodies directed against three discrete epitopes on HBsAg. Similar point mutations occurring in different genotypes were shown to influence epitope conformation differently, indicating that the genetic backbone is a major factor in predicting phenotype. C-terminal changes associated with antiviral resistance were found to modulate epitope profiles of HBsAg. Treatment options which may promote drug resistance should be avoided to both protect antiviral treatment and prevent facilitation of vaccine and diagnostic escape mutants.


Asunto(s)
Farmacorresistencia Viral , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/inmunología , Mutación Missense , Anticuerpos Monoclonales/inmunología , ADN Viral/química , ADN Viral/genética , Epítopos/genética , Epítopos/inmunología , Hepatitis B/virología , Anticuerpos contra la Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
14.
Curr Biol ; 30(19): R1092-R1095, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022244

RESUMEN

The origin of syphilis has been hotly debated for decades. Ancient pathogen DNA may provide new evidence to redefine our understanding of this mystery, but is the mystery itself flawed in its assumptions?


Asunto(s)
Sífilis , Treponema pallidum , Europa (Continente) , Genoma Bacteriano , Humanos , Sífilis/genética
15.
Virus Evol ; 6(1): veaa012, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32099667

RESUMEN

Herpes Simplex Virus type 1 (HSV-1) chronically infects over 70 per cent of the global population. Clinical manifestations are largely restricted to recurrent epidermal vesicles. However, HSV-1 also leads to encephalitis, the infection of the brain parenchyma, with high associated rates of mortality and morbidity. In this study, we performed target enrichment followed by direct sequencing of HSV-1 genomes, using target enrichment methods on the cerebrospinal fluid (CSF) of clinical encephalitis patients and from skin swabs of epidermal vesicles on non-encephalopathic patients. Phylogenetic analysis revealed high inter-host diversity and little population structure. In contrast, samples from different lesions in the same patient clustered with similar patterns of allelic variants. Comparison of consensus genome sequences shows HSV-1 has been freely recombining, except for distinct islands of linkage disequilibrium (LD). This suggests functional constraints prevent recombination between certain genes, notably those encoding pairs of interacting proteins. Distinct LD patterns characterised subsets of viruses recovered from CSF and skin lesions, which may reflect different evolutionary constraints in different body compartments. Functions of genes under differential constraint related to immunity or tropism and provide new hypotheses on tissue-specific mechanisms of viral infection and latency.

16.
Lancet Microbe ; 1(6): e263-e271, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35544222

RESUMEN

BACKGROUND: In a longitudinal study assessing the WHO strategy for yaws eradication using mass azithromycin treatment, we observed resurgence of yaws cases with dominance of a single JG8 sequence type and emergence of azithromycin-resistant Treponema pallidum subspecies pertenue (T p pertenue). Here, we analyse genomic changes in the bacterial population using samples collected during the study. METHODS: We did whole bacterial genome sequencing directly on DNA extracted from 37 skin lesion swabs collected from patients on Lihir Island, Papua New Guinea, between April 1, 2013, and Nov 1, 2016. We produced phylogenies and correlated these with spatiotemporal information to investigate the source of new cases and the emergence of five macrolide-resistant cases. We used deep amplicon sequencing of surveillance samples to assess the presence of minority macrolide-resistant populations. FINDINGS: We recovered 20 whole T p pertenue genomes, and phylogenetic analysis showed that the re-emerging JG8 sequence type was composed of three bacterial sublineages characterised by distinct spatiotemporal patterns. Of five patients with resistant T p pertenue, all epidemiologically linked, we recovered genomes from three and found no variants. Deep sequencing showed that before treatment, the index patient had fixed macrolide-sensitive T p pertenue, whereas the post-treatment sample had a fixed resistant genotype, as did three of four contact cases. INTERPRETATION: In this study, re-emergence of yaws cases was polyphyletic, indicating multiple epidemiological sources. However, given the genomic and epidemiological linkage of resistant cases and the rarity of resistance alleles in the general population, azithromycin resistance is likely to have evolved only once in this study, followed by onward dissemination. FUNDING: Wellcome and Provincial Deputation of Barcelona.

18.
Nat Commun ; 10(1): 3255, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332179

RESUMEN

Syphilis is a sexually transmitted infection caused by Treponema pallidum subspecies pallidum and may lead to severe complications. Recent years have seen striking increases in syphilis in many countries. Previous analyses have suggested one lineage of syphilis, SS14, may have expanded recently, indicating emergence of a single pandemic azithromycin-resistant cluster. Here we use direct sequencing of T. pallidum combined with phylogenomic analyses to show that both SS14- and Nichols-lineages are simultaneously circulating in clinically relevant populations in multiple countries. We correlate the appearance of genotypic macrolide resistance with multiple independently evolved SS14 sub-lineages and show that genotypically resistant and sensitive sub-lineages are spreading contemporaneously. These findings inform our understanding of the current syphilis epidemic by demonstrating how macrolide resistance evolves in Treponema subspecies and provide a warning on broader issues of antimicrobial resistance.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Macrólidos/farmacología , Sífilis/tratamiento farmacológico , Treponema pallidum/genética , Antibacterianos/farmacología , Azitromicina/farmacología , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Genómica , Genotipo , Humanos , Epidemiología Molecular , Pandemias/prevención & control , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie , Sífilis/epidemiología , Sífilis/microbiología , Treponema pallidum/clasificación , Treponema pallidum/fisiología
19.
Nat Rev Microbiol ; 21(2): 69, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36536144
20.
Microb Genom ; 4(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30248001

RESUMEN

Novel adenovirus genotypes are associated with outbreaks of disease, such as acute gastroenteritis, renal disease, upper respiratory tract infection and keratoconjunctivitis. Here, we identify novel and variant adenovirus genotypes in children coinfected with enterotoxigenic Escherichia coli, in Bangladesh. Metagenomic sequencing of stool was performed and whole adenovirus genomes were extracted. A novel species D virus, designated genotype 90 (P33H27F67) was identified, and the partial genome of a putative recombinant species B virus was recovered. Furthermore, the enteric types HAdV-A61 and HAdV-A40 were found in stool specimens. Knowledge of the diversity of adenovirus genomes circulating worldwide, especially in low-income countries where the burden of disease is high, will be required to ensure that future vaccination strategies cover the diversity of adenovirus strains associated with disease.


Asunto(s)
Infecciones por Adenovirus Humanos/genética , Adenovirus Humanos/genética , Gastroenteritis/virología , Genoma Viral , Genotipo , Queratoconjuntivitis/virología , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/prevención & control , Adenovirus Humanos/aislamiento & purificación , Bangladesh/epidemiología , Niño , Preescolar , Heces/virología , Femenino , Gastroenteritis/epidemiología , Gastroenteritis/genética , Gastroenteritis/prevención & control , Humanos , Queratoconjuntivitis/epidemiología , Queratoconjuntivitis/genética , Queratoconjuntivitis/prevención & control , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA