Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Org Biomol Chem ; 19(12): 2716-2724, 2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33667287

RESUMEN

Ring-fused benzimidazolequinones are well-known anti-tumour agents, but dimeric ring-fused adducts are new. The alicyclic [1,2-a] ring-fused dimethoxybenzimidazole-benzimidazolequinone (DMBBQ) intermediate allows late-stage functionalization of bis-p-benzimidazolequinones. DMBBQs are chlorinated and brominated at the p-dimethoxybenzene site using nontoxic sodium halide and Oxone in HFIP/water. X-ray crystallography is used to rationalize site preference in terms of the discontinuity in conjugation in the DMBBQ system. Quinone formation occurs by increasing in situ halogen generation and water. Conversely, radical trifluoromethylation occurs at the quinone of the DMBBQ.

2.
J Am Chem Soc ; 142(4): 1731-1734, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31927990

RESUMEN

We present the structure of a novel solvate adduct formed by dissolving ferrocene, FeCp2, in hexafluorobenzene, C6F6. This adduct demonstrates the remarkably strong interactions between the five-membered aromatic rings of FeCp2 and the six-membered aromatic ring of C6F6. These molecular interactions are sufficiently strong and anisotropic to change the temperature of the order-disorder transition of the ferrocene molecule from below ca. 164 K to RT. No solvate adduct could be formed between benzene and FeCp2. These observations will be of particular relevance to the crystal engineering community, whose goal is the design of solids with bespoke properties.

3.
Soft Matter ; 14(43): 8821-8827, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30346465

RESUMEN

Gelation processes grant access to a wealth of soft materials with tailorable properties, in applications as diverse as environmental remediation, biomedicine and electronics. Several classes of self-assembling gelators have been studied and employ non-covalent bonds to direct assembly, but recently attention has come to focus on how the overall shape of the gelator molecule impacts its gelation. Here we study a new sub-family of low molecular weight organogelators and explore how steric rearrangement influences their gelation. The gels produced are characterised with X-ray diffraction and small-angle neutron scattering (SANS) to probe their ex situ and in situ gelation mechanisms. The best examples were then tested for environmental remediation applications, gelling petrol and oils in the presence of water and salts.


Asunto(s)
Restauración y Remediación Ambiental , Urea/química , Carbamatos/química , Geles , Modelos Moleculares , Conformación Molecular , Peso Molecular , Solventes/química
4.
Angew Chem Int Ed Engl ; 53(6): 1598-601, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24376131

RESUMEN

The first photoactivated doped quantum dot vector for metal-ion release has been developed. A facile method for doping copper(I) cations within ZnS quantum dot shells was achieved through the use of metal-dithiocarbamates, with Cu(+) ions elucidated by X-ray photoelectron spectroscopy. Photoexcitation of the quantum dots has been shown to release Cu(+) ions, which was employed as an effective catalyst for the Huisgen [3+2] cycloaddition reaction. The relationship between the extent of doping, catalytic activity, and the fluorescence quenching was also explored.

5.
Sci Rep ; 14(1): 8144, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584187

RESUMEN

Sulfur polymers produced through 'inverse vulcanization' exhibit various attributes, such as photocatalytic activity and a high capacity to adsorb heavy metals. Nevertheless, there is a lack of research investigating the use of sulfur polymers as materials for the removal of organic contaminants. In this work, porous sulfur polymers (PSPs) were synthesized from elemental sulfur and 1,3-diisopropenylbenzene, with porosity introduced via salt templating. The result is a material that can strongly adsorb and chemically neutralize a model organic contaminant (caffeine). PSPs show adsorption up to 5 times higher than a leading adsorption material (activated carbon). Furthermore, either the adsorption or degradation processes can govern the removal efficiency depending on the synthesis parameters of PSPs. This is the first-ever report demonstrating sulfur polymers as effective materials for removing emerging contaminants from water. The versatile synthesis of sulfur polymers offers variation, which means that there is much more to explore in this exciting research area.

6.
Adv Sci (Weinh) ; 11(10): e2306246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145968

RESUMEN

Protein-based biomaterial use is expanding within medicine, together with the demand to visualize their placement and behavior in vivo. However, current medical imaging techniques struggle to differentiate between protein-based implants and surrounding tissue. Here a fast, simple, and translational solution for tracking transplanted protein-based scaffolds is presented using X-ray CT-facilitating long-term, non-invasive, and high-resolution imaging. X-ray visible scaffolds are engineered by selectively iodinating tyrosine residues under mild conditions using readily available reagents. To illustrate translatability, a clinically approved hernia repair mesh (based on decellularized porcine dermis) is labeled, preserving morphological and mechanical properties. In a mouse model of mesh implantation, implants retain marked X-ray contrast up to 3 months, together with an unchanged degradation rate and inflammatory response. The technique's compatibility is demonstrated with a range of therapeutically relevant protein formats including bovine, porcine, and jellyfish collagen, as well as silk sutures, enabling a wide range of surgical and regenerative medicine uses. This solution tackles the challenge of visualizing implanted protein-based biomaterials, which conventional imaging methods fail to differentiate from endogenous tissue. This will address previously unanswered questions regarding the accuracy of implantation, degradation rate, migration, and structural integrity, thereby accelerating optimization and safe translation of therapeutic biomaterials.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ratones , Animales , Bovinos , Porcinos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Rayos X , Halogenación , Materiales Biocompatibles/química
7.
Expert Opin Drug Deliv ; 20(7): 905-919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249548

RESUMEN

INTRODUCTION: Glaucoma is a group of progressive optic neuropathies resulting in irreversible blindness. It is associated with an elevation of intraocular pressure (>21 mm Hg) and optic nerve damage. Reduction of the intraocular pressure (IOP) through the administration of ocular hypotensive eye drops is one of the most common therapeutic strategies. Patient adherence to conventional eye drops remains a major obstacle in preventing glaucoma progression. Additional problems emerge from inadequate patient education as well as local and systemic side effects associated with adminstering ocular hypotensive drugs. AREAS COVERED: Sustained-release drug delivery systems for glaucoma treatment are classified into extraocular systems including wearable ocular surface devices or multi-use (immediate-release) eye formulations (such as aqueous solutions, gels; ocular inserts, contact lenses, periocular rings, or punctual plugs) and intraocular drug delivery systems (such as intraocular implants, and microspheres for supraciliary drug delivery). EXPERT OPINION: Sustained release platforms for the delivery of ocular hypotensive drugs (small molecules and biologics) may improve patient adherence and prevent vision loss. Such innovations will only be widely adopted when efficacy and safety has been established through large-scale trials. Sustained release drug delivery can improve glaucoma treatment adherence and reverse/prevent vision deterioration. It is expected that these approaches will improve clinical management and prognosis of glaucoma.


Asunto(s)
Glaucoma , Humanos , Preparaciones de Acción Retardada , Glaucoma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Ojo , Antihipertensivos/uso terapéutico , Soluciones Oftálmicas/uso terapéutico
8.
Foods ; 10(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065221

RESUMEN

Poly(styrene) (PS) has been heavily utilised in disposable food packaging due to its insulating properties, optical translucency, and long-shelf life. Despite these desirable characteristics, (PS) poses toxicity concerns to human's health through styrene monomer leaching into foodstuffs. Environmental and marine hazards are another growing concerns due to improper and/or absence of recycling strategies and facilities. This preliminary work aims to investigate the effect of temperature, food composition and contact times on the migration of the styrene monomer from poly(styrene) food contact materials into food simulants. Poly(styrene) cups showed a relatively low level of styrene migration with the highest being 0.110 µg/mL, whereas food containers showed a much higher level of styrene leaching with up to 6 µg/mL. This could be due to an increase in the hydrophobicity of the simulants' characteristics from low to high fat content and the increase in the testing temperatures from 5 °C to 70 °C. ANOVA statistical analysis is used to compare the means of three or more groups of data, whereas t-test analysis is used to compare means of two groups. This was carried out on each individual sample to determine the significance of changing the temperature, simulant type, or both on the level of migration observed in the results. All significant values were tested at 95% confidence level p < 0.05, concluding that fat content and high temperatures were found to significantly increase the level of styrene migration. Nile Red staining method was used to demonstrate that particulate poly(styrene), as well as styrene monomer, migrated into tested food simulants from typical containers, which is becoming a cause for concern as evidence of microplastic ingestion increases.

9.
RSC Adv ; 10(23): 13369-13373, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35493007

RESUMEN

We have investigated the in situ formation of Low Molecular Weight Organogelator (LMWO) molecules in oil-on-water slicks through dual reactive precursor injection. This method alleviates the need for any carrier solvent or prior heating, therefore reducing the environmental impact of LMWOs, giving instantaneous gelation, even at low temperatures (-5 °C). We show minimal leaching from our gels into the water layer.

10.
J Mater Chem B ; 8(32): 7264-7274, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32642748

RESUMEN

Magnetic resonance imaging (MRI) is one of the most widely-used non-invasive clinical imaging tools, producing detailed anatomical images whilst avoiding side effects such as trauma or X-ray radiation exposure. In this article, a new approach to non-invasive monitoring of drug release from a delivery vehicle via MRI was developed, using pH-responsive Eudragit L100 and S100 fibres encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) and carmofur (a drug used in the treatment of colon cancer). Fibres were prepared by electrospinning, and found to be smooth and cylindrical with diameters of 645 ± 225 nm for L100 and 454 ± 133 nm for S100. The fibres exhibited pH responsive dissolution behaviour. Around the physiological pH range, clear pH-responsive proton relaxation rate changes due to matrix swelling/dissolution can be observed: r2 values of L100 fibres increase from 29.3 ± 8.3 to 69.8 ± 2.5 mM-1 s-1 over 3 h immersion in a pH 7.4 medium, and from 13.5 ± 2.0 mM-1 s-1 to 42.1 ± 3.0 mM-1 s-1 at pH 6.5. The r2 values of S100 fibres grow from 30.4 ± 4.4 to 64.7 ± 1.0 mM-1 s-1 at pH 7.4, but at pH 6.5, where the S100 fibres are not soluble, r2 remains very low (< 4 mM-1 s-1). These dramatic changes in relaxivity demonstrate that pH-responsive dissolution results in SPION release. In vitro drug release studies showed the formulations gave rapid release of carmofur at physiological pH values (pH 6.5 and 7.4), and acid stability studies revealed that they can protect the SPIONs from digestion in acid environments, giving the fibres potential for oral administration. Exploration of the relationship between relaxivity and carmofur release suggests a linear correlation (R2 > 0.94) between the two. Mathematical equations were developed to predict carmofur release in vitro, with very similar experimental and predicted release profiles obtained. Therefore, the formulations developed herein have the potential to be used for non-invasive monitoring of drug release in vivo, and could ultimately result in dramatic reductions to off-target side effects from interventions such as chemotherapy.


Asunto(s)
Portadores de Fármacos/química , Liberación de Fármacos , Imagen por Resonancia Magnética , Nanocompuestos/química , Compuestos Férricos/química , Fluorouracilo/análogos & derivados , Fluorouracilo/química , Concentración de Iones de Hidrógeno
11.
Nanomaterials (Basel) ; 10(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545557

RESUMEN

In this work a natural zeolite was modified with silver following two different methods to derive Ag2O and Ag0 nanocomposites. The materials were fully characterized and the results showed that both materials were decorated with nanoparticles of size of 5-25 nm. The natural and modified zeolites were used for the removal of iodide from aqueous solutions of initial concentration of 30-1400 ppm. Natural zeolite showed no affinity for iodide while silver forms were very efficient reaching a capacity of up to 132 mg/g. Post-adsorption characterizations showed that AgI was formed on the surface of the modified zeolites and the amount of iodide removed was higher than expected based on the silver content. A combination of experimental data and characterizations indicate that the excess iodide is most probably related to negatively charged AgI colloids and Ag-I complexes forming in the solution as well as on the surface of the modified zeolites.

12.
J Colloid Interface Sci ; 579: 401-411, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32615483

RESUMEN

The use of bio-polymers as stabilising agents for iron oxide-based negative magnetic resonance imaging (MRI) contrast agents has become popular in recent years, however the wide polydispersity of biologically-derived and commercially available polymers limits the ability to produce truly tuneable and reproducible behaviour, a major challenge in this area. In this work, stable colloids of iron oxide nanoparticles were prepared utilising precision-engineered bio-polymer mimics, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) polymers, with controlled narrow polydispersity molecular weights, as templating stabilisers. In addition to producing magnetic colloids with excellent MRI contrast capabilities (r2 values reaching 434.2 mM-1 s-1 at 25 °C and 23 MHz, several times higher than similar commercial analogues), variable field relaxometry provided unexpected important insights into the dynamic environment of the hydrated materials, and hence their exceptional MRI behaviour. Thanks to the polymer's templating backbone and flexible conformation in aqueous suspension, nanocomposites appear to behave as "multi-core" clustered species, enhancing interparticle interactions whilst retaining water diffusion, boosting relaxation properties at low frequency. This clustering behaviour, evidenced by small-angle X-ray scattering, and strong relaxometric response, was fine-tuned using the well-defined molecular weight polymer species with precise iron to polymer ratios. By also showing negligible haemolytic activity, these nanocomposites exhibit considerable potential for MRI diagnostics.


Asunto(s)
Nanopartículas de Magnetita , Polímeros , Medios de Contraste , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética
13.
Biomaterials ; 243: 119930, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32171101

RESUMEN

Alginate hydrogels are cross-linked polymers with high water content, tuneable chemical and material properties, and a range of biomedical applications including drug delivery, tissue engineering, and cell therapy. However, their similarity to soft tissue often renders them undetectable within the body using conventional bio-medical imaging techniques. This leaves much unknown about their behaviour in vivo, posing a challenge to therapy development and validation. To address this, we report a novel, fast, and simple method of incorporating the nuclear imaging radio-metal 111In into the structure of alginate hydrogels by utilising its previously-undescribed capacity as an ionic cross-linking agent. This enabled non-invasive in vivo nuclear imaging of hydrogel delivery and retention across the whole body, over time, and across a range of model therapies including: nasal and oral drug delivery, stem cell transplantation, and cardiac tissue engineering. This information will facilitate the development of novel therapeutic hydrogel formulations, encompassing alginate, across disease categories.


Asunto(s)
Alginatos , Hidrogeles , Reactivos de Enlaces Cruzados , Ácido Glucurónico , Ácidos Hexurónicos , Iones , Polímeros , Ingeniería de Tejidos
14.
Chem Sci ; 10(9): 2592-2597, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996974

RESUMEN

We introduce the concept of surface radio-mineralisation (SRM) to describe the chelate-free radiolabelling of iron-oxide and ferrite nanoparticles. We demonstrate the effectiveness of SRM with both 111In and 89Zr for bare, polymer-matrix multicore, and surface-functionalised magnetite/maghemite nanoparticles; and for bare Y3Fe5O12 nanoparticles. By analogy with geological mineralisation (the hydrothermal deposition of metals as minerals in ore bodies or lodes) we demonstrate that the heat-induced and aqueous SRM process deposits radiometal-oxides onto the nanoparticle or core surfaces, passing through the matrix or coating if present, without changing the size, structure, or magnetic properties of the nanoparticle or core. We show in a mouse model followed over 7 days that the SRM is sufficient to allow quantitative, non-invasive, prolonged, whole-body localisation of injected nanoparticles with nuclear imaging.

15.
ACS Omega ; 3(4): 4342-4351, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29732454

RESUMEN

We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.

16.
ACS Appl Mater Interfaces ; 9(32): 27202-27212, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28742321

RESUMEN

We present a study of the seeded growth of copper on the surface of two classes of single-walled carbon nanotubes (SWNTs) in order to compare the effects of surface functional groups. Pyridine-functionalized HiPco SWNTs and ultrashort SWNTs (US-SWNTs) were synthesized (py-SWNTs and py-US-SWNTs, respectively), and the functionality was used as seed sites for copper, via an aqueous electroless deposition reaction, as a comparison to the carboxylic acid functionality present on piranha-etched SWNTs and the native US-SWNTs. UV-vis spectroscopy demonstrated the take-up of Cu(II) ions by the functionalized SWNTs. TEM showed that the SWNTs with pyridine functionality more rapidly produced a more even distribution of copper seeds with a narrower size distribution (3-12 nm for py-US-SWNTs) than those SWNTs with oxygen functional groups (ca. 30 nm), showing the adventitious role of the pyridine functional group in the seeding process. Seed composition was confirmed as Cu(0) by XPS and SAED. Copper growth rate and morphology were shown to be affected by degree of pyridine functionality, the length of the SWNT, and the electroless reaction solvent used.

17.
Sci Rep ; 7(1): 4090, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642612

RESUMEN

A scalable solvothermal technique is reported for the synthesis of a photocatalytic composite material consisting of orthorhombic Ta3N5 nanoparticles and WOx≤3 nanowires. Through X-ray diffraction and X-ray photoelectron spectroscopy, the as-grown tungsten(VI) sub-oxide was identified as monoclinic W18O49. The composite material catalysed the degradation of Rhodamine B at over double the rate of the Ta3N5 nanoparticles alone under illumination by white light, and continued to exhibit superior catalytic properties following recycling of the catalysts. Moreover, strong molecular adsorption of the dye to the W18O49 component of the composite resulted in near-complete decolourisation of the solution prior to light exposure. The radical species involved within the photocatalytic mechanisms were also explored through use of scavenger reagents. Our research demonstrates the exciting potential of this novel photocatalyst for the degradation of organic contaminants, and to the authors' knowledge the material has not been investigated previously. In addition, the simplicity of the synthesis process indicates that the material is a viable candidate for the scale-up and removal of dye pollutants on a wider scale.

18.
Nanoscale ; 9(43): 16586-16590, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29072750

RESUMEN

Graphitic carbon nitrides (GCNs) represent a family of 2D materials composed of carbon and nitrogen with variable amounts of hydrogen, used in a wide variety of applications. We report a method of room temperature thin film deposition which allows ordered GCN layers to be deposited on a very wide variety of substrates, including conductive glass, flexible plastics, nanoparticles and nano-structured surfaces, where they form a highly conformal coating on the nanoscale. Film thicknesses of below 20 nm are achievable. In this way we construct functional nanoscale heterojunctions between TiO2 nanoparticles and GCN, capable of producing H2 photocatalytically under visible light irradiation. The films are hydrogen rich, have a band gap around 1.7 eV, display transmission electron microscopy lattice fringes as well as X-ray diffraction peaks despite being deposited at room temperature, and show characteristic Raman and IR bands. We use cluster etching to reveal the chemical environments of C and N in GCN using X-ray photoelectron spectroscopy. We elucidate the mechanism of this deposition, which operates via sequential surface adsorption and reaction analogous to atomic layer deposition. The mechanism may have implications for current models of carbon nitride formation.

20.
Sci Rep ; 6: 20271, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26842884

RESUMEN

An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems.


Asunto(s)
Alcanos/química , Cápsulas/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Liberación de Fármacos , Óxido Ferrosoférrico/química , Campos Magnéticos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA