Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16443, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777587

RESUMEN

Neuroblastoma, the most common type of pediatric extracranial solid tumor, causes 10% of childhood cancer deaths. Despite intensive multimodal treatment, the outcomes of high-risk neuroblastoma remain poor. We urgently need to develop new therapies with safe long-term toxicity profiles for rapid testing in clinical trials. Drug repurposing is a promising approach to meet these needs. Here, we investigated disulfiram, a safe and successful chronic alcoholism treatment with known anticancer and epigenetic effects. Disulfiram efficiently induced cell cycle arrest and decreased the viability of six human neuroblastoma cell lines at half-maximal inhibitory concentrations up to 20 times lower than its peak clinical plasma level in patients treated for chronic alcoholism. Disulfiram shifted neuroblastoma transcriptome, decreasing MYCN levels and activating neuronal differentiation. Consistently, disulfiram significantly reduced the protein level of lysine acetyltransferase 2A (KAT2A), drastically reducing acetylation of its target residues on histone H3. To investigate disulfiram's anticancer effects in an in vivo model of high-risk neuroblastoma, we developed a disulfiram-loaded emulsion to deliver the highly liposoluble drug. Treatment with the emulsion significantly delayed neuroblastoma progression in mice. These results identify KAT2A as a novel target of disulfiram, which directly impacts neuroblastoma epigenetics and is a promising candidate for repurposing to treat pediatric neuroblastoma.


Asunto(s)
Disulfiram , Neuroblastoma , Animales , Niño , Humanos , Ratones , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Línea Celular Tumoral , Disulfiram/farmacología , Disulfiram/uso terapéutico , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Emulsiones/uso terapéutico , Histona Acetiltransferasas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
2.
Mol Cancer Ther ; 20(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33087510

RESUMEN

We report the discovery, via a unique high-throughput screening strategy, of a novel bioactive anticancer compound: Thiol Alkylating Compound Inducing Massive Apoptosis (TACIMA)-218. We demonstrate that this molecule engenders apoptotic cell death in genetically diverse murine and human cancer cell lines, irrespective of their p53 status, while sparing normal cells. TACIMA-218 causes oxidative stress in the absence of protective antioxidants normally induced by Nuclear factor erythroid 2-related factor 2 activation. As such, TACIMA-218 represses RNA translation and triggers cell signaling cascade alterations in AKT, p38, and JNK pathways. In addition, TACIMA-218 manifests thiol-alkylating properties resulting in the disruption of redox homeostasis along with key metabolic pathways. When administered to immunocompetent animals as a monotherapy, TACIMA-218 has no apparent toxicity and induces complete regression of pre-established lymphoma and melanoma tumors. In sum, TACIMA-218 is a potent oxidative stress inducer capable of selective cancer cell targeting.


Asunto(s)
Antineoplásicos/farmacología , Oxidantes/farmacología , Alquilación , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatina/metabolismo , Cisteína/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucólisis/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
3.
J Exp Clin Cancer Res ; 38(1): 251, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196146

RESUMEN

BACKGROUND: Cardiac glycosides are approved for the treatment of heart failure as Na+/K+ pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation. METHODS: Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry. RESULTS: At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression. CONCLUSION: Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia.


Asunto(s)
Antineoplásicos/efectos adversos , Expresión Génica/efectos de los fármacos , Genes myc , Insuficiencia Cardíaca/etiología , Leucemia/genética , Lisina/metabolismo , Proscilaridina/efectos adversos , Acetilación , Antineoplásicos/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Relación Dosis-Respuesta a Droga , Epigénesis Genética/efectos de los fármacos , Perfilación de la Expresión Génica , Histonas/metabolismo , Humanos , Leucemia/complicaciones , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Modelos Biológicos , Proscilaridina/uso terapéutico , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
4.
Cancer J ; 23(5): 270-276, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28926427

RESUMEN

Targeting DNA hypermethylation, using nucleoside analogs, is an efficient approach to reprogram cancer cell epigenome leading to reduced proliferation, increased differentiation, recognition by the immune system, and ultimately cancer cell death. DNA methyltransferase inhibitors have been approved for the treatment of myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myelogenous leukemia. To improve clinical efficacy and overcome mechanisms of drug resistance, a second generation of DNA methyltransferase inhibitors has been designed and is currently in clinical trials. Although efficient in monotherapy against hematologic malignancies, the potential of DNA methyltransferase inhibitors to synergize with small molecules targeting chromatin or immunotherapy will provide additional opportunities for their future clinical application against leukemia and solid tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Metilación de ADN , Metilasas de Modificación del ADN/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Epigénesis Genética , Humanos , Inmunoterapia/métodos , Neoplasias/genética , Neoplasias/patología
5.
Cancer Res ; 76(6): 1494-505, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26719529

RESUMEN

Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.


Asunto(s)
Antineoplásicos/farmacología , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Epigénesis Genética/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Señalización del Calcio/genética , Línea Celular , Línea Celular Tumoral , Islas de CpG/efectos de los fármacos , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen/efectos de los fármacos , Células HCT116 , Células HEK293 , Células HL-60 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células K562 , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA