Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Hematol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38727017

RESUMEN

PURPOSE OF REVIEW: Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS: Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY: The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.

2.
Am J Physiol Heart Circ Physiol ; 326(3): H655-H669, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241009

RESUMEN

Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-ß (TGF-ß) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-ß drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-ß1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.


Asunto(s)
Células Endoteliales , Insuficiencia Cardíaca , Humanos , Células Endoteliales/metabolismo , Miocardio/metabolismo , Fibroblastos/metabolismo , Fibrosis , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Clin Chem ; 70(5): 709-726, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38484135

RESUMEN

BACKGROUND: Secondary hypertension (SH) is a form of high blood pressure caused by an identifiable underlying condition. Although, it accounts for a small fraction of the overall hypertensive population, detection and management of SH is of utmost importance, because SH phenotypes carry a high cardiovascular risk and can possibly be cured by timely treatment. CONTENT: This review focuses on the endocrine causes of SH, such as primary aldosteronism, Cushing syndrome, thyroid disease, pheochromocytoma and paraganglioma, acromegaly, and rare monogenic forms. It discusses current biomarkers, analytical methods, and diagnostic strategies, highlighting advantages and limitations of each approach. It also explores the emerging -omics technologies that can provide a comprehensive and multidimensional assessment of SH and its underlying mechanisms. SUMMARY: Endocrine SH is a heterogeneous and complex condition that requires proper screening and confirmatory tests to avoid diagnostic delays and improve patient outcomes. Careful biomarker interpretation is essential due to potential interferences, variability, and method-dependent differences. Liquid chromatography-tandem mass spectrometry is a superior method for measuring low-concentration hormones and metabolites involved in SH, but it requires expertise. Omics approaches have great potential to identify novel biomarkers, pathways, and targets for SH diagnosis and treatment, especially considering its multifactorial nature.


Asunto(s)
Biomarcadores , Hipertensión , Humanos , Hipertensión/diagnóstico , Enfermedades del Sistema Endocrino/diagnóstico , Hiperaldosteronismo/diagnóstico , Feocromocitoma/diagnóstico , Síndrome de Cushing/diagnóstico
4.
BMC Pulm Med ; 24(1): 19, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191411

RESUMEN

BACKGROUND: VenoVenous ExtraCorporeal Membrane Oxygenation (VV-ECMO) has been widely used as supportive therapy for severe respiratory failure related to Acute Respiratory Distress Syndrome (ARDS) due to coronavirus 2019 (COVID-19). Only a few data describe the maximum time under VV-ECMO during which pulmonary recovery remains possible. The main objective of this study is to describe the outcomes of prolonged VV-ECMO in patients with COVID-19-related ARDS. METHODS: This retrospective study was conducted at a tertiary ECMO center in Brussels, Belgium, between March 2020 and April 2022. All adult patients with ARDS due to COVID-19 who were managed with ECMO therapy for more than 50 days as a bridge to recovery were included. RESULTS: Fourteen patients met the inclusion criteria. The mean duration of VV-ECMO was 87 ± 29 days. Ten (71%) patients were discharged alive from the hospital. The 90-day survival was 86%, and the one-year survival was 71%. The evolution of the patients was characterized by very impaired pulmonary compliance that started to improve slowly and progressively on day 53 (± 25) after the start of ECMO. Of note, four patients improved substantially after a second course of steroids. CONCLUSIONS: There is potential for recovery in patients with very severe ARDS due to COVID-19 supported by VV-ECMO for up to 151 days.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Estudios Retrospectivos , COVID-19/complicaciones , COVID-19/terapia , Bélgica , Síndrome de Dificultad Respiratoria/terapia
5.
Am J Physiol Heart Circ Physiol ; 324(3): H305-H317, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607800

RESUMEN

Fatty acids (FAs) rapidly and efficiently reduce cardiac glucose uptake in the Randle cycle or glucose-FA cycle. This fine-tuned physiological regulation is critical to allow optimal substrate allocation during fasted and fed states. However, the mechanisms involved in the direct FA-mediated control of glucose transport have not been totally elucidated yet. We previously reported that leucine and ketone bodies, other cardiac substrates, impair glucose uptake by increasing global protein acetylation from acetyl-CoA. As FAs generate acetyl-CoA as well, we postulated that protein acetylation is enhanced by FAs and participates in their inhibitory action on cardiac glucose uptake. Here, we demonstrated that both palmitate and oleate promoted a rapid increase in protein acetylation in primary cultured adult rat cardiomyocytes, which correlated with an inhibition of insulin-stimulated glucose uptake. This glucose absorption deficit was caused by an impairment in the translocation of vesicles containing the glucose transporter GLUT4 to the plasma membrane, although insulin signaling remained unaffected. Interestingly, pharmacological inhibition of lysine acetyltransferases (KATs) prevented this increase in protein acetylation and glucose uptake inhibition induced by FAs. Similarly, FA-mediated inhibition of insulin-stimulated glucose uptake could be prevented by KAT inhibitors in perfused hearts. To summarize, enhanced protein acetylation can be considered as an early event in the FA-induced inhibition of glucose transport in the heart, explaining part of the Randle cycle.NEW & NOTEWORTHY Our results show that cardiac metabolic overload by oleate or palmitate leads to increased protein acetylation inhibiting GLUT4 translocation to the plasma membrane and glucose uptake. This observation suggests an additional regulation mechanism in the physiological glucose-FA cycle originally discovered by Randle.


Asunto(s)
Ácidos Grasos , Ácido Oléico , Ratas , Animales , Ácidos Grasos/metabolismo , Transporte de Proteínas , Ácido Oléico/metabolismo , Acetilación , Acetilcoenzima A/metabolismo , Transporte Biológico , Miocitos Cardíacos/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Insulina/metabolismo , Palmitatos/farmacología , Transportador de Glucosa de Tipo 4/metabolismo
6.
Platelets ; 34(1): 2250002, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37700239

RESUMEN

Platelet inhibition is the main treatment strategy to prevent atherothrombotic complications after acute coronary syndrome or percutaneous coronary intervention. Despite dual antiplatelet therapy (DAPT) combining aspirin and a P2Y12 receptor inhibitor, high on-treatment platelet reactivity (HPR) persists in some patients due to poor response to treatment and is associated with ischemic risk. Tubulin acetylation has been pointed out as a hallmark of stable microtubules responsible for the discoid shape of resting platelets. However, the impact of antiplatelet treatments on this post-translational modification has never been studied. This study investigated whether tubulin acetylation differs according to antiplatelet therapy and on-treatment platelet reactivity. Platelets were isolated from arterial blood samples of 240 patients admitted for coronary angiography, and levels of α-tubulin acetylation on lysine 40 (α-tubulin K40 acetylation) were assessed by western blot. We show that platelet α-tubulin K40 acetylation was significantly increased in DAPT-treated patients. In addition, the proportion of patients with high levels of α-tubulin K40 acetylation was drastically reduced among DAPT-treated patients with HPR. Multivariate logistic regression confirmed that DAPT resulting in adequate platelet inhibition was strongly associated with elevated α-tubulin K40 acetylation. In conclusion, our study highlights the role of elevated platelet α-tubulin K40 acetylation as a marker of platelet inhibition in response to DAPT.Clinical trial registration: https://clinicaltrials.gov - NCT03034148.


What is the context? High on-treatment platelet reactivity due to dual antiplatelet therapy poor response is associated with thrombotic risk.Acetylation of α-tubulin K40 plays a crucial role in regulating platelet shape.High α-tubulin K40 acetylation is a hallmark of stable microtubules.What is new? α-tubulin K40 acetylation is increased in platelets from dual antiplatelet therapy-treated patients.High platelet α-tubulin K40 acetylation is mainly observed in clopidogrel-responsive patients.What is the impact? Elevated acetylated K40 α-tubulin could be used as a readout of adequate platelet inhibition in response to dual antiplatelet therapy.High α-tubulin K40 acetylation could contribute to maintaining the resting morphology of circulating platelets and therefore modify their capacity to be involved in thrombotic events.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Tubulina (Proteína) , Acetilación , Plaquetas , Procesamiento Proteico-Postraduccional
7.
Platelets ; 34(1): 2188965, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37157842

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is associated with high burden of comorbidities known to increase the mean platelet volume (MPV). This parameter has been associated with morbidity and mortality in HF. However, the role of platelets and the prognostic relevance of MPV in HFpEF remain largely unexplored. We aimed to evaluate the clinical usefulness of MPV as a prognostic marker in HFpEF. We prospectively enrolled 228 patients with HFpEF (79 ± 9 years; 66% females) and 38 controls of similar age and gender (78 ± 5 years; 63% females). All subjects underwent two-dimensional echocardiography and MPV measurements. Patients were followed-up for a primary end point of all-cause mortality or first HF hospitalization. The prognostic impact of MPV was determined using Cox proportional hazard models. Mean MPV was significantly higher in HFpEF patients compared with controls (MPV: 10.7 ± 1.1fL vs. 10.1 ± 1.1fL, p = .005). HFpEF patients (n = 56) with MPV >75th percentile (11.3 fL) displayed more commonly a history of ischemic cardiomyopathy. Over a median follow-up of 26 months, 136 HFpEF patients reached the composite endpoint. MPV >75th percentile was a significant predictor of the primary endpoint (HR: 1.70 [1.08; 2.67], p = .023) adjusted for NYHA class, chronic obstructive pulmonary disease, loop diuretics, renal function, and hemoglobin. We demonstrated that MPV was significantly higher in HFpEF patients compared with controls of similar age and gender. Elevated MPV was a strong and independent predictor of poor outcome in HFpEF patients and may be relevant for clinical use.


What is the context? Heart failure with preserved ejection fraction (HFpEF) is associated with several comorbidities known to increase the mean platelet volume (MPV).MPV is a measure of platelet size and a potential marker of platelet reactivity. An increased MPV results from an increased platelet turnover.MPV has been associated with morbidity and mortality from heart failure.No study has previously compared MPV between HFpEF and controls and investigated the prognostic relevance of MPV in HFpEF disease.What is new? In this study, we compared the MPV between HFpEF patients and controls of similar age and gender, prospectively enrolled between 2015 and 2021. We evaluated the prognostic role of elevated MPV in HFpEF patients.Our main results:The MPV was higher in HFpEF patients compared to controls of similar age and gender.HFpEF patients with elevated MPV displayed more commonly a history of ischemic cardiomyopathy.Elevated MPV was a strong and independent predictor of poor outcome in HFpEF patients.What is the impact? MPV may be relevant for clinical use to predict clinical outcome in HFpEF patients.Elevated MPV reflecting platelet activity supports the potential role of platelets in HFpEF's pathophysiology.


Asunto(s)
Insuficiencia Cardíaca , Femenino , Humanos , Masculino , Insuficiencia Cardíaca/diagnóstico , Pronóstico , Volumen Sistólico , Volúmen Plaquetario Medio , Hospitalización , Función Ventricular Izquierda
8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108440

RESUMEN

Severe forms of coronavirus 2019 (COVID-19) disease are caused by an exaggerated systemic inflammatory response and subsequent inflammation-related coagulopathy. Anti-inflammatory treatment with low dose dexamethasone has been shown to reduce mortality in COVID-19 patients requiring oxygen therapy. However, the mechanisms of action of corticosteroids have not been extensively studied in critically ill patients in the context of COVID-19. Plasma biomarkers of inflammatory and immune responses, endothelial and platelet activation, neutrophil extracellular trap formation, and coagulopathy were compared between patients treated or not by systemic dexamethasone for severe forms of COVID-19. Dexamethasone treatment significantly reduced the inflammatory and lymphoid immune response in critical COVID-19 patients but had little effect on the myeloid immune response and no effect on endothelial activation, platelet activation, neutrophil extracellular trap formation, and coagulopathy. The benefits of low dose dexamethasone on outcome in critical COVID-19 can be partially explained by a modulation of the inflammatory response but not by reduction of coagulopathy. Future studies should explore the impact of combining dexamethasone with other immunomodulatory or anticoagulant drugs in severe COVID-19.


Asunto(s)
COVID-19 , Citocinas , Humanos , SARS-CoV-2 , Enfermedad Crítica , Tratamiento Farmacológico de COVID-19 , COVID-19/complicaciones , Dexametasona/farmacología , Dexametasona/uso terapéutico
9.
Am J Physiol Heart Circ Physiol ; 322(6): H1032-H1043, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486479

RESUMEN

Our group previously demonstrated that an excess of nutrients, as observed in diabetes, provokes an increase in cardiac protein acetylation responsible for a reduced insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The acetylated proteins involved in this event have yet not been identified. α-Tubulin is a promising candidate as a major cytoskeleton component involved, among other things, in the translocation of GLUT4-containing vesicles from their intracellular pools toward the plasma membrane. Moreover, α-tubulin is known to be acetylated, Lys40 (K40) being its best characterized acetylated residue. The present work sought to evaluate the impact of α-tubulin K40 acetylation on cardiac glucose entry, with a particular interest in GLUT4 translocation. First, we observed that a mouse model of high-fat diet-induced obesity presented an increase in cardiac α-tubulin K40 acetylation level. We next showed that treatment of insulin-sensitive primary cultured adult rat cardiomyocytes with tubacin, a specific tubulin acetylation inducer, reduced insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, decreasing α-tubulin K40 acetylation by expressing a nonacetylable dominant form of α-tubulin (mCherry α-tubulin K40A mutant) remarkably intensified insulin-induced glucose transport. Finally, mCherry α-tubulin K40A expression similarly improved glucose transport in insulin-resistant cardiomyocytes or after AMP-activated protein kinase activation. Taken together, our study demonstrates that modulation of α-tubulin K40 acetylation level affects glucose transport in cardiomyocytes, offering new putative therapeutic insights regarding modulation of glucose metabolism in insulin-resistant and diabetic hearts.NEW & NOTEWORTHY Acetylation level of α-tubulin on K40 is increased in the heart of a diet-induced mouse model of type 2 diabetes. Pharmacological stimulation of α-tubulin K40 acetylation lowers insulin-mediated GLUT4 vesicles translocation to the plasma membrane, reducing glucose transport. Expressing a nonacetylable dominant form of α-tubulin boosts glucose uptake in both insulin-sensitive and insulin-resistant cardiomyocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Miocitos Cardíacos , Tubulina (Proteína) , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilación , Animales , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacología , Lisina/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Transporte de Proteínas , Ratas , Tubulina (Proteína)/metabolismo
10.
Biochem J ; 478(7): 1315-1319, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33821970

RESUMEN

Loss of the insulin-stimulated glucose uptake in muscle is a crucial event participating in the defect of whole-body metabolism in type 2 diabetes. Therefore, identification by Pavarotti et al. (Biochem. J (2021) 478 (2): 407-422) of complexin-2 as an important contributor to glucose transporter 4 (GLUT4) translocation to muscle cell plasma membrane upon insulin stimulation is essential. The present commentary discusses the biological importance of the findings and proposes future challenges and opportunities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Membrana Celular/metabolismo , Glucosa , Humanos , Insulina/metabolismo , Proteínas de Transporte de Monosacáridos , Proteínas Musculares
11.
Am J Physiol Heart Circ Physiol ; 320(2): H838-H853, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416451

RESUMEN

Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.


Asunto(s)
Glucosa/metabolismo , Miocitos Cardíacos/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Transportador de Glucosa de Tipo 4/antagonistas & inhibidores , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Florizina/farmacología , Isoformas de Proteínas , Ratas Wistar , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa/genética
12.
Basic Res Cardiol ; 116(1): 10, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564961

RESUMEN

We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Conexina 43/metabolismo , Infarto del Miocardio/enzimología , Miocardio/enzimología , Miofibroblastos/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proliferación Celular , Conexina 43/genética , Modelos Animales de Enfermedad , Femenino , Fibrosis , Eliminación de Gen , Células HEK293 , Humanos , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miofibroblastos/patología , Transducción de Señal
13.
Cardiovasc Diabetol ; 20(1): 48, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608002

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome, with several underlying etiologic and pathophysiologic factors. The presence of diabetes might identify an important phenotype, with implications for therapeutic strategies. While diabetes is associated with worse prognosis in HFpEF, the prognostic impact of glycemic control is yet unknown. Hence, we investigated phenotypic differences between diabetic and non-diabetic HFpEF patients (pts), and the prognostic impact of glycated hemoglobin (HbA1C). METHODS: We prospectively enrolled 183 pts with HFpEF (78 ± 9 years, 38% men), including 70 (38%) diabetics (type 2 diabetes only). They underwent 2D echocardiography (n = 183), cardiac magnetic resonance (CMR) (n = 150), and were followed for a combined outcome of all-cause mortality and first HF hospitalization. The prognostic impact of diabetes and glycemic control were determined with Cox proportional hazard models, and illustrated by adjusted Kaplan Meier curves. RESULTS: Diabetic HFpEF pts were younger (76 ± 9 vs 80 ± 8 years, p = 0.002), more obese (BMI 31 ± 6 vs 27 ± 6 kg/m2, p = 0.001) and suffered more frequently from sleep apnea (18% vs 7%, p = 0.032). Atrial fibrillation, however, was more frequent in non-diabetic pts (69% vs 53%, p = 0.028). Although no echocardiographic difference could be detected, CMR analysis revealed a trend towards higher LV mass (66 ± 18 vs 71 ± 14 g/m2, p = 0.07) and higher levels of fibrosis (53% vs 36% of patients had ECV by T1 mapping > 33%, p = 0.05) in diabetic patients. Over 25 ± 12 months, 111 HFpEF pts (63%) reached the combined outcome (24 deaths and 87 HF hospitalizations). Diabetes was a significant predictor of mortality and hospitalization for heart failure (HR: 1.72 [1.1-2.6], p = 0.011, adjusted for age, BMI, NYHA class and renal function). In diabetic patients, lower levels of glycated hemoglobin (HbA1C < 7%) were associated with worse prognosis (HR: 2.07 [1.1-4.0], p = 0.028 adjusted for age, BMI, hemoglobin and NT-proBNP levels). CONCLUSION: Our study highlights phenotypic features characterizing diabetic patients with HFpEF. Notably, they are younger and more obese than their non-diabetic counterpart, but suffer less from atrial fibrillation. Although diabetes is a predictor of poor outcome in HFpEF, intensive glycemic control (HbA1C < 7%) in diabetic patients is associated with worse prognosis.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Control Glucémico , Insuficiencia Cardíaca/fisiopatología , Hipoglucemiantes/uso terapéutico , Volumen Sistólico , Función Ventricular Izquierda , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/mortalidad , Femenino , Hemoglobina Glucada/metabolismo , Control Glucémico/efectos adversos , Estado de Salud , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/terapia , Hospitalización , Humanos , Hipoglucemiantes/efectos adversos , Masculino , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
14.
J Interv Cardiol ; 2021: 5590093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290573

RESUMEN

BACKGROUND: Non-flow-limiting nonculprit lesions (NCL) that contain a large lipid-rich necrotic core (nonculprit lipid-rich plaques (NC-LRP)) are most likely to cause recurrent acute coronary syndrome after ST-elevation myocardial infarction (STEMI). Near-infrared spectroscopy (NIRS) detects LRPs using the maximum 4 mm lipid-core burden index (maxLCBI4 mm). Few data are available regarding NIRS-guided therapy of these NC-LRPs, which are a potential target for preventive stenting. Bioresorbable vascular scaffold (BVS) provides local drug delivery and could facilitate plaque passivation after resorption. This study sought to assess the safety of BVS implantation in NC-LRPs and its efficacy in reducing maxLCBI4 mm at 2-year follow-up after STEMI. METHODS AND RESULTS: In total, 33 non-flow-limiting NCLs from 29 STEMI patients were included in this study. Of these, 15 were LRPs and were randomly assigned to either the BVS + optimal medical therapy (OMT) arm (group 1; N = 7) or the OMT arm (group 2; N = 8). At baseline, there were no differences in plaque characteristics between groups (fractional flow reserve: 0.85 ± 0.04 vs. 0.89 ± 0.06; diameter stenosis (DS): 43.4 ± 8 vs. 40.1 ± 10.7%; plaque burden 54.98 ± 5.8 vs. 49.76 ± 8.31%; and maxLCBI4 mm 402 [348; 564] vs. 373 [298; 516]; p=NS for all comparisons between groups 1 and 2, respectively). Seven BVSs were implanted 3 ± 1 days after STEMI in six patients, without complications. At angiographic follow-up (712 [657; 740] days), a significant and similar reduction of maxLCBI4 mm was observed in both groups, with a median change of 306 [257; 377] in group 1 vs. 300 [278; 346] in group 2 (p=0.44). DS was significantly lower in group 1 vs. group 2 (19.8 ± 7 vs. 41.7 ± 13%, p=0.003), while plaque burden remained unchanged in both groups. Overall survival was 100%, target lesion failure was 13%, and stent thrombosis was 0%. CONCLUSIONS: BVS + OMT and OMT appear as similarly safe and effective in reducing maxLCBI4mm in NC-LRPs at 2-year follow-up after STEMI.


Asunto(s)
Reserva del Flujo Fraccional Miocárdico , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Implantes Absorbibles , Angiografía Coronaria , Estudios de Seguimiento , Humanos , Lípidos , Masculino , Intervención Coronaria Percutánea/efectos adversos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/cirugía , Resultado del Tratamiento
15.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884932

RESUMEN

Acetyl-CoA carboxylase (ACC) is the first enzyme regulating de novo lipid synthesis via the carboxylation of acetyl-CoA into malonyl-CoA. The inhibition of its activity decreases lipogenesis and, in parallel, increases the acetyl-CoA content, which serves as a substrate for protein acetylation. Several findings support a role for acetylation signaling in coordinating signaling systems that drive platelet cytoskeletal changes and aggregation. Therefore, we investigated the impact of ACC inhibition on tubulin acetylation and platelet functions. Human platelets were incubated 2 h with CP640.186, a pharmacological ACC inhibitor, prior to thrombin stimulation. We have herein demonstrated that CP640.186 treatment does not affect overall platelet lipid content, yet it is associated with increased tubulin acetylation levels, both at the basal state and after thrombin stimulation. This resulted in impaired platelet aggregation. Similar results were obtained using human platelets that were pretreated with tubacin, an inhibitor of tubulin deacetylase HDAC6. In addition, both ACC and HDAC6 inhibitions block key platelet cytoskeleton signaling events, including Rac1 GTPase activation and the phosphorylation of its downstream effector, p21-activated kinase 2 (PAK2). However, neither CP640.186 nor tubacin affects thrombin-induced actin cytoskeleton remodeling, while ACC inhibition results in decreased thrombin-induced reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK) phosphorylation. We conclude that when using washed human platelets, ACC inhibition limits tubulin deacetylation upon thrombin stimulation, which in turn impairs platelet aggregation. The mechanism involves a downregulation of the Rac1/PAK2 pathway, being independent of actin cytoskeleton.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Agregación Plaquetaria/efectos de los fármacos , Trombina/farmacología , Tubulina (Proteína)/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetilación , Citoesqueleto de Actina/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Trombina/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
16.
Pflugers Arch ; 472(9): 1385-1399, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32809061

RESUMEN

Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Cardiopatías/metabolismo , Miocardio/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Cardiopatías/genética , Humanos , Proteínas de Transporte de Sodio-Glucosa/genética
17.
Blood ; 132(11): 1180-1192, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30018077

RESUMEN

AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Plaquetas/enzimología , Transducción de Señal , Trombosis/enzimología , Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/genética , Animales , Plaquetas/patología , Técnicas de Sustitución del Gen , Ratones , Ratones Noqueados , Fosforilación/genética , Trombosis/genética , Trombosis/patología
18.
Eur Radiol ; 30(11): 6204-6212, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32548647

RESUMEN

OBJECTIVES: To evaluate how pulmonary artery (PA) distensibility performs in detecting pulmonary hypertension due to left heart disease (PH-LHD) in comparison with parameters from ungated computed tomography (CT) and echocardiography. METHODS: One hundred patients (79 men, mean age = 63 ± 17 years) with either severe heart failure with reduced ejection fraction (HFrEF), aortic stenosis, or primary mitral regurgitation prospectively underwent right heart catheterization, ungated CT, ECG-gated CT, and echocardiography. During the ECG-gated CT, the right PA distensibility was calculated. In ungated CT, dPA, dPA/AA, the ratio of dPA to the diameter of the vertebra, segmental PA diameter, segmental PA-to-bronchus ratio, and the main PA volume were measured; the egg-and-banana sign was recorded. During echocardiography, the tricuspid regurgitation (TR) gradient was measured. The areas under the ROC curves (AUC) of these signs were computed and compared with DeLong test. Correlation between PA distensibility and PA pressure (PAP) was investigated through Pearson's coefficient. RESULTS: PA distensibility was lower in patients with PH than in those without PH (11.4 vs. 21.2%, p < 0.001) and correlated negatively with mean PAP (r = - 0.72, p < 0.001). Age, PA size, and mean PAP were independent predictors of PA distensibility. PA distensibility < 18% detected PH-LHD with 96% sensitivity and 73% specificity; its AUC was 0.92, larger than that of any other sign at ungated CT and TR gradient (AUC ranging from 0.54 to 0.83, DeLong: p ranging from 0.020 to < 0.001). CONCLUSION: PA distensibility on an ECG-gated CT can detect PH-LHD better than the parameters reflecting PA dilatation in ungated CT or TR gradient in the echocardiography of patients with severe HFrEF, aortic stenosis, or mitral regurgitation. KEY POINTS: • In left heart disease, pulmonary artery distensibility is lower in patients with PH than in those without pulmonary hypertension (11.4 vs. 21.2%, p < 0.001). • In left heart disease, pulmonary artery distensibility detects pulmonary hypertension with an area under the receiver operating curve of 0.92. • In left heart disease, the area under the receiver operating curve of pulmonary artery distensibility for detecting pulmonary hypertension is larger than that of all other signs at ungated CT (p from 0.019 to < 0.001) and tricuspid regurgitation gradient at echocardiography (p = 0.020).


Asunto(s)
Hipertensión Pulmonar/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/complicaciones , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Cateterismo Cardíaco/métodos , Técnicas de Imagen Sincronizada Cardíacas , Ecocardiografía/métodos , Femenino , Corazón/fisiopatología , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/diagnóstico por imagen , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Insuficiencia de la Válvula Mitral/complicaciones , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Tamaño de los Órganos , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Volumen Sistólico , Tomografía Computarizada por Rayos X/métodos
19.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759774

RESUMEN

Vascular hyperpermeability is a determinant factor in the pathophysiology of sepsis. While, AMP-activated protein kinase (AMPK) is known to play a role in maintaining endothelial barrier function in this condition. Therefore, we investigated the underlying molecular mechanisms of this protective effect. α1AMPK expression and/or activity was modulated in human dermal microvascular endothelial cells using either α1AMPK-targeting small interfering RNA or the direct pharmacological AMPK activator 991, prior to lipopolysaccharide (LPS) treatment. Western blotting was used to analyze the expression and/or phosphorylation of proteins that compose cellular junctions (zonula occludens-1 (ZO-1), vascular endothelial cadherin (VE-Cad), connexin 43 (Cx43)) or that regulate actin cytoskeleton (p38 MAPK; heat shock protein 27 (HSP27)). Functional endothelial permeability was assessed by in vitro Transwell assays, and quantification of cellular junctions in the plasma membrane was assessed by immunofluorescence. Actin cytoskeleton remodeling was evaluated through actin fluorescent staining. We consequently demonstrate that α1AMPK deficiency is associated with reduced expression of CX43, ZO-1, and VE-Cad, and that the drastic loss of CX43 is likely responsible for the subsequent decreased expression and localization of ZO-1 and VE-Cad in the plasma membrane. Moreover, α1AMPK activation by 991 protects against LPS-induced endothelial barrier disruption by reinforcing cortical actin cytoskeleton. This is due to a mechanism that involves the phosphorylation of p38 MAPK and HSP27, which is nonetheless independent of the small GTPase Rac1. This results in a drastic decrease of LPS-induced hyperpermeability. We conclude that α1AMPK activators that are suitable for clinical use may provide a specific therapeutic intervention that limits sepsis-induced vascular leakage.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Permeabilidad Capilar/genética , Sepsis/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Antígenos CD/genética , Cadherinas/genética , Conexina 43/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Proteínas de Choque Térmico HSP27/genética , Humanos , Lipopolisacáridos/toxicidad , ARN Interferente Pequeño/farmacología , Sepsis/patología , Transducción de Señal , Proteína de la Zonula Occludens-1/genética
20.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326182

RESUMEN

Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise. Remote ischemic conditioning has some similarity with exercise and can be induced by short periods of ischemia and reperfusion of a limb, and it can be performed in people who cannot exercise. There is abundant evidence that exercise is beneficial in diabetes and ischemic heart disease, but there is a need to elucidate the specific cardiovascular effects of emerging and unconventional forms of exercise in people with diabetes. In addition, remote ischemic conditioning may be considered among the options to induce beneficial effects in these patients. The characteristics and interactions of diabetes and ischemic heart disease, and the known effects of exercise and remote ischemic conditioning in the presence of metabolic syndrome and diabetes, are analyzed in this brief review.


Asunto(s)
Cardiomiopatías Diabéticas/epidemiología , Ejercicio Físico , Precondicionamiento Isquémico , Isquemia Miocárdica/epidemiología , Animales , Diabetes Mellitus/epidemiología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/terapia , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Redes y Vías Metabólicas , Isquemia Miocárdica/etiología , Isquemia Miocárdica/prevención & control , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/epidemiología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA