Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(13): e202217519, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36651714

RESUMEN

A catalyst type is disclosed allowing for exceptional efficiency in direct 1,4-additions. The catalyst is a zwitterionic entity, in which acetate binds to CuII , which is formally negatively charged and serving as counterion for benzimidazolium. All 3 functionalities are involved in the catalytic activation. For maleimides productivity was increased by a factor >300 compared to literature (TONs up to 6700). High stereoselectivity and productivity was attained for a broad range of other Michael acceptors as well. The polyfunctional catalyst is accessible in only 4 steps from N-Ph-benzimidazole with an overall yield of 96 % and robust during catalysis. This allowed to reuse the same catalyst multiple times with nearly constant efficiency. Mechanistic studies, in particular by DFT, give a detailed picture how the catalyst operates. The benzimidazolium unit stabilizes the coordinated enolate nucleophile and prevents that acetate/acetic acid dissociate from the catalyst.

2.
Angew Chem Int Ed Engl ; 62(36): e202307317, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37358186

RESUMEN

Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward ß,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.

3.
Phys Chem Chem Phys ; 24(36): 21617-21630, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35938232

RESUMEN

Aiming at merocyanine dyes with good linear optical and self-assembly properties, a series of rigid mono-, bi- and tricyclic merocyanines with O- and N-donor units as well as keto or malodinitrile acceptor units was prepared by a convergent approach. With particular focus on tailoring the donor unit, a selection of appropriate derivatives was investigated with respect to their dye properties in solution and in the bulk (UV/Vis, fluorescence, temperature-dependent fluorescence, lifetime). Determination of fluorescence quantum yields revealed the importance of the donor unit and the chromophore size. Larger chromophores and N-donors were beneficial for strong emission in solution, whereas small chromophores and O-donors favored emission in the solid state. To rationalize the different optical properties depending on their donor unit, density functional theory (DFT) calculations were performed. Liquid crystalline derivatives were additionally studied by optical polarization microscopy, differential scanning calorimetry, and X-ray diffraction experiments. For merocyanines with O-donor, fluorinated side chains were mandatory to get stable enantiotropic SmA phases regardless of chromophore size, side chain lengths or acceptor unit. Increased mesophase widths (up to 134 K) were observed upon increasing the chromophore lengths, chain lengths (up to C12) and F/C ratio in the side chain. On the other hand, merocyanines with N-donor and keto acceptor showed enantiotropic SmA phases in the presence of simple alkoxy side chains. The tricyclic merocyanine with N-donor shows an additional SmE phase at lower temperatures. The results revealed the importance of the donor unit to balance optical and mesomorphic properties in merocynanines.

4.
Chemistry ; 26(32): 7199-7204, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32167607

RESUMEN

The chromium(III) complex [CrIII (ddpd)2 ]3+ (molecular ruby; ddpd=N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reduced to the genuine chromium(II) complex [CrII (ddpd)2 ]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T1/2 around room temperature. The low-spin and high-spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single-crystal XRD). Excitation of [CrII (ddpd)2 ]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This initial study on the unique reduced molecular ruby paves the way for thermally and photochemically switchable magnetic systems based on chromium complexes complementing the well-established iron(II) SCO systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA