Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2414: 97-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34784034

RESUMEN

Vaccines consisting of whole inactivated bacteria (bacterins) are generated by incubation of the pathogen with chemicals. This is a time-consuming procedure which may lead to less immunogenic material, as critical antigenic structures can be altered by chemical modification. A promising alternative approach is low-energy electron irradiation (LEEI). Like other types of ionizing radiation, it mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. As the electrons have a limited penetration depth, LEEI is currently used for sterilization of surfaces. The inactivation of pathogens in liquids requires irradiation of the culture in a thin film to ensure complete penetration. Here, we describe two approaches for the irradiation of bacterial suspensions in a research scale. After confirmation of inactivation, the material can be directly used for vaccination, without any purification steps.


Asunto(s)
Vacunas Bacterianas , Electrones , Bacterias , Radiación Ionizante , Vacunas de Productos Inactivados
2.
Front Immunol ; 12: 684052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149724

RESUMEN

Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these "off-the-shelf" therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NK-mediated specific lysis of tumor cells was maintained at stable levels for three days post-irradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application.


Asunto(s)
Proliferación Celular/efectos de la radiación , Daño del ADN , Rayos gamma , Células Asesinas Naturales/citología , Células Asesinas Naturales/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular , Electrones , Citometría de Flujo , Humanos
3.
Sci Rep ; 10(1): 12786, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732876

RESUMEN

Ionizing radiation is widely used to inactivate pathogens. It mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. It is therefore highly suited for the sterilization of biological samples or the generation of inactivated vaccines. However, inactivation of viruses or bacteria requires relatively high doses and substantial amounts of radiation energy. Consequently, irradiation is restricted to shielded facilities-protecting personnel and the environment. We have previously shown that low energy electron irradiation (LEEI) has the same capacity to inactivate pathogens in liquids as current irradiation methods, but generates much less secondary X-ray radiation, which enables the use in normal laboratories by self-shielded irradiation equipment. Here, we present concepts for automated LEEI of liquids, in disposable bags or as a continuous process. As the electrons have a limited penetration depth, the liquid is transformed into a thin film. High concentrations of viruses (Influenza, Zika virus and Respiratory Syncytial Virus), bacteria (E. coli, B. cereus) and eukaryotic cells (NK-92 cell line) are efficiently inactivated by LEEI in a throughput suitable for various applications such as sterilization, vaccine manufacturing or cell therapy. Our results validate the premise that for pathogen and cell inactivation in liquids, LEEI represents a suitable and versatile irradiation method for standard biological research and production laboratories.


Asunto(s)
Investigación Biomédica , Electrones , Laboratorios , Protección Radiológica/métodos , Radiación Ionizante , Esterilización/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Escherichia coli , Células Eucariotas , Orthomyxoviridae , Exposición a la Radiación/prevención & control , Protección Radiológica/instrumentación , Virus Sincitiales Respiratorios , Vacunas de Productos Inactivados , Virus Zika
5.
Viruses ; 8(11)2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27886076

RESUMEN

Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or ß-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy.


Asunto(s)
Antígenos Bacterianos/efectos de la radiación , Antígenos Virales/efectos de la radiación , Desinfección/métodos , Escherichia coli/efectos de la radiación , Radiación Ionizante , Virus/efectos de la radiación , Antígenos Bacterianos/inmunología , Antígenos Virales/inmunología , Electrones , Escherichia coli/inmunología , Vacunas de Productos Inactivados/inmunología , Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA