Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448586

RESUMEN

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Metabolómica , Femenino , Humanos , Embarazo , Acetona/sangre , Acetona/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Colestasis Intrahepática/sangre , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Estudios de Cohortes , Estudio de Asociación del Genoma Completo/métodos , Hipertensión/sangre , Hipertensión/genética , Hipertensión/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopía de Resonancia Magnética , Análisis de la Aleatorización Mendeliana , Redes y Vías Metabólicas/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo
2.
Hum Mol Genet ; 31(7): 1159-1170, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34875050

RESUMEN

Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold Pmeta = 6.5 × 10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-CE %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-CE) became significantly associated with LTL (P = 3.6 × 10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (P = 1.9 × 10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.


Asunto(s)
Leucocitos , Acortamiento del Telómero , Biomarcadores/metabolismo , Estudios Transversales , Ácidos Grasos/metabolismo , Humanos , Leucocitos/metabolismo , Lípidos , Telómero/genética
3.
Reprod Biomed Online ; 49(3): 104073, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38964280

RESUMEN

RESEARCH QUESTION: Are age at last childbirth and number of children, as facets of female reproductive health, related to individual lifespan or familial longevity? DESIGN: This observational study included 10,255 female participants from a multigenerational historical cohort, the LINKing System for historical family reconstruction (LINKS), and 1258 female participants from 651 long-lived families in the Leiden Longevity Study (LLS). Age at last childbirth and number of children, as outcomes of reproductive success, were compared with individual and familial longevity using the LINKS dataset. In addition, the genetic predisposition in the form of a polygenic risk score (PRS) for age at menopause was studied in relation to familial longevity using the LLS dataset. RESULTS: For each year increase in the age of the birth of the last child, a woman's lifespan increased by 0.06 years (22 days; P = 0.002). The yearly risk for having a last child was 9% lower in women who survived to the oldest 10% of their birth cohort (hazard ratio 0.91, 95% CI 0.86-0.95). Women who came from long-living families did not have a higher mean age of last childbirth. There was no significant association between familial longevity and genetic predisposition to age at menopause. CONCLUSIONS: Female reproductive health associates with a longer lifespan. Familial longevity does not associate to extended reproductive health. Other factors in somatic maintenance that support a longer lifespan are likely to have an impact on reproductive health.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38553327

RESUMEN

BACKGROUND: Depressive symptoms are associated with an increased risk of Alzheimer's disease (AD). There has been a recent emergence in plasma biomarkers for AD pathophysiology, such as amyloid-beta (Aß) and phosphorylated tau (p-tau), as well as for axonal damage (neurofilament light, NfL) and astrocytic activation (glial fibrillary acidic protein, GFAP). Hypothesizing that depressive symptoms may occur along the AD process, we investigated associations between plasma biomarkers of AD with depressive symptoms in individuals without dementia. METHODS: A two-stage meta-analysis was performed on 2 clinic-based and 6 population-based cohorts (N = 7210) as part of the Netherlands Consortium of Dementia Cohorts. Plasma markers (Aß42/40, p-tau181, NfL, and GFAP) were measured using Single Molecular Array (Simoa; Quanterix) assays. Depressive symptoms were measured with validated questionnaires. We estimated the cross-sectional association of each standardized plasma marker (determinants) with standardized depressive symptoms (outcome) using linear regressions, correcting for age, sex, education, and APOE ε4 allele presence, as well as subgrouping by sex and APOE ε4 allele. Effect estimates were entered into a random-effects meta-analysis. RESULTS: Mean age of participants was 71 years. The prevalence of clinically relevant depressive symptoms ranged from 1% to 22%. None of the plasma markers were associated with depressive symptoms in the meta-analyses. However, NfL was associated with depressive symptoms only in APOE ε4 carriers (ß 0.11; 95% CI: 0.05-0.17). CONCLUSIONS: Late-life depressive symptoms did not show an association to plasma biomarkers of AD pathology. However, in APOE ε4 allele carriers, a more profound role of neurodegeneration was suggested with depressive symptoms.

5.
BMC Med Res Methodol ; 24(1): 58, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459475

RESUMEN

BACKGROUND: There is divergence in the rate at which people age. The concept of biological age is postulated to capture this variability, and hence to better represent an individual's true global physiological state than chronological age. Biological age predictors are often generated based on cross-sectional data, using biochemical or molecular markers as predictor variables. It is assumed that the difference between chronological and predicted biological age is informative of one's chronological age-independent aging divergence ∆. METHODS: We investigated the statistical assumptions underlying the most popular cross-sectional biological age predictors, based on multiple linear regression, the Klemera-Doubal method or principal component analysis. We used synthetic and real data to illustrate the consequences if this assumption does not hold. RESULTS: The most popular cross-sectional biological age predictors all use the same strong underlying assumption, namely that a candidate marker of aging's association with chronological age is directly informative of its association with the aging rate ∆. We called this the identical-association assumption and proved that it is untestable in a cross-sectional setting. If this assumption does not hold, weights assigned to candidate markers of aging are uninformative, and no more signal may be captured than if markers would have been assigned weights at random. CONCLUSIONS: Cross-sectional methods for predicting biological age commonly use the untestable identical-association assumption, which previous literature in the field had never explicitly acknowledged. These methods have inherent limitations and may provide uninformative results, highlighting the importance of researchers exercising caution in the development and interpretation of cross-sectional biological age predictors.


Asunto(s)
Envejecimiento , Humanos , Estudios Transversales , Biomarcadores , Modelos Lineales , Análisis Multivariante
6.
Eur J Epidemiol ; 39(6): 623-641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581608

RESUMEN

Aging is a multifaceted and intricate physiological process characterized by a gradual decline in functional capacity, leading to increased susceptibility to diseases and mortality. While chronological age serves as a strong risk factor for age-related health conditions, considerable heterogeneity exists in the aging trajectories of individuals, suggesting that biological age may provide a more nuanced understanding of the aging process. However, the concept of biological age lacks a clear operationalization, leading to the development of various biological age predictors without a solid statistical foundation. This paper addresses these limitations by proposing a comprehensive operationalization of biological age, introducing the "AccelerAge" framework for predicting biological age, and introducing previously underutilized evaluation measures for assessing the performance of biological age predictors. The AccelerAge framework, based on Accelerated Failure Time (AFT) models, directly models the effect of candidate predictors of aging on an individual's survival time, aligning with the prevalent metaphor of aging as a clock. We compare predictors based on the AccelerAge framework to a predictor based on the GrimAge predictor, which is considered one of the best-performing biological age predictors, using simulated data as well as data from the UK Biobank and the Leiden Longevity Study. Our approach seeks to establish a robust statistical foundation for biological age clocks, enabling a more accurate and interpretable assessment of an individual's aging status.


Asunto(s)
Envejecimiento , Modelos Estadísticos , Humanos , Envejecimiento/fisiología , Anciano , Persona de Mediana Edad , Femenino , Masculino , Longevidad , Adulto , Anciano de 80 o más Años
7.
Hum Mol Genet ; 30(5): 393-409, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33517400

RESUMEN

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Interleucina-1/genética , Interleucina-6/genética , Receptores de Interleucina-6/genética , Estudios de Cohortes , Regulación de la Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Interleucina-6/sangre , Polimorfismo de Nucleótido Simple , Población Blanca/genética
8.
EMBO J ; 38(23): e101982, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31633821

RESUMEN

Cellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16INK4A during human skin ageing. Aged melanocytes also display additional markers of senescence such as reduced HMGB1 and dysfunctional telomeres, without detectable telomere shortening. Additionally, senescent melanocyte SASP induces telomere dysfunction in paracrine manner and limits proliferation of surrounding cells via activation of CXCR3-dependent mitochondrial ROS. Finally, senescent melanocytes impair basal keratinocyte proliferation and contribute to epidermal atrophy in vitro using 3D human epidermal equivalents. Crucially, clearance of senescent melanocytes using the senolytic drug ABT737 or treatment with mitochondria-targeted antioxidant MitoQ suppressed this effect. In conclusion, our study provides proof-of-concept evidence that senescent melanocytes affect keratinocyte function and act as drivers of human skin ageing.


Asunto(s)
Envejecimiento/patología , Atrofia/patología , Senescencia Celular , Melanocitos/patología , Piel/patología , Telómero/patología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/efectos de los fármacos , Atrofia/inducido químicamente , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Epidermis/efectos de los fármacos , Epidermis/patología , Femenino , Humanos , Masculino , Melanocitos/metabolismo , Persona de Mediana Edad , Comunicación Paracrina , Especies Reactivas de Oxígeno/metabolismo , Receptores CXCR4/metabolismo , Piel/metabolismo , Telómero/metabolismo , Adulto Joven
9.
Am J Hum Genet ; 106(3): 389-404, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109421

RESUMEN

Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leucocitos/ultraestructura , Nucleótidos/metabolismo , Telómero , Humanos
10.
FASEB J ; 36(11): e22578, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183353

RESUMEN

The response to lifestyle intervention studies is often heterogeneous, especially in older adults. Subtle responses that may represent a health gain for individuals are not always detected by classical health variables, stressing the need for novel biomarkers that detect intermediate changes in metabolic, inflammatory, and immunity-related health. Here, our aim was to develop and validate a molecular multivariate biomarker maximally sensitive to the individual effect of a lifestyle intervention; the Personalized Lifestyle Intervention Status (PLIS). We used 1 H-NMR fasting blood metabolite measurements from before and after the 13-week combined physical and nutritional Growing Old TOgether (GOTO) lifestyle intervention study in combination with a fivefold cross-validation and a bootstrapping method to train a separate PLIS score for men and women. The PLIS scores consisted of 14 and four metabolites for females and males, respectively. Performance of the PLIS score in tracking health gain was illustrated by association of the sex-specific PLIS scores with several classical metabolic health markers, such as BMI, trunk fat%, fasting HDL cholesterol, and fasting insulin, the primary outcome of the GOTO study. We also showed that the baseline PLIS score indicated which participants respond positively to the intervention. Finally, we explored PLIS in an independent physical activity lifestyle intervention study, showing similar, albeit remarkably weaker, associations of PLIS with classical metabolic health markers. To conclude, we found that the sex-specific PLIS score was able to track the individual short-term metabolic health gain of the GOTO lifestyle intervention study. The methodology used to train the PLIS score potentially provides a useful instrument to track personal responses and predict the participant's health benefit in lifestyle interventions similar to the GOTO study.


Asunto(s)
Estilo de Vida , Obesidad , Anciano , Biomarcadores , HDL-Colesterol , Femenino , Humanos , Insulina , Masculino
11.
Eur J Nutr ; 62(3): 1357-1375, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36571600

RESUMEN

PURPOSE: Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. METHODS: Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. RESULTS: We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. CONCLUSION: This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content.


Asunto(s)
Epigenoma , Estudio de Asociación del Genoma Completo , Masculino , Persona de Mediana Edad , Humanos , Femenino , Epigenoma/genética , Islas de CpG , Epigénesis Genética , Metilación de ADN
12.
Nature ; 541(7635): 81-86, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002404

RESUMEN

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Asunto(s)
Adiposidad/genética , Índice de Masa Corporal , Metilación de ADN/genética , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Epigenómica , Estudio de Asociación del Genoma Completo , Obesidad/genética , Tejido Adiposo/metabolismo , Pueblo Asiatico/genética , Sangre/metabolismo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Europa (Continente)/etnología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , India/etnología , Masculino , Obesidad/sangre , Obesidad/complicaciones , Sobrepeso/sangre , Sobrepeso/complicaciones , Sobrepeso/genética , Población Blanca/genética
13.
BMC Med ; 19(1): 266, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34727949

RESUMEN

BACKGROUND: Observational studies suggest interconnections between thyroid status, metabolism, and risk of coronary artery disease (CAD), but causality remains to be proven. The present study aimed to investigate the potential causal relationship between thyroid status and cardiovascular disease and to characterize the metabolomic profile associated with thyroid status. METHODS: Multi-cohort two-sample Mendelian randomization (MR) was performed utilizing genome-wide significant variants as instruments for standardized thyrotropin (TSH) and free thyroxine (fT4) within the reference range. Associations between TSH and fT4 and metabolic profile were investigated in a two-stage manner: associations between TSH and fT4 and the full panel of 161 metabolomic markers were first assessed hypothesis-free, then directional consistency was assessed through Mendelian randomization, another metabolic profile platform, and in individuals with biochemically defined thyroid dysfunction. RESULTS: Circulating TSH was associated with 52/161 metabolomic markers, and fT4 levels were associated with 21/161 metabolomic markers among 9432 euthyroid individuals (median age varied from 23.0 to 75.4 years, 54.5% women). Positive associations between circulating TSH levels and concentrations of very low-density lipoprotein subclasses and components, triglycerides, and triglyceride content of lipoproteins were directionally consistent across the multivariable regression, MR, metabolomic platforms, and for individuals with hypo- and hyperthyroidism. Associations with fT4 levels inversely reflected those observed with TSH. Among 91,810 CAD cases and 656,091 controls of European ancestry, per 1-SD increase of genetically determined TSH concentration risk of CAD increased slightly, but not significantly, with an OR of 1.03 (95% CI 0.99-1.07; p value 0.16), whereas higher genetically determined fT4 levels were not associated with CAD risk (OR 1.00 per SD increase of fT4; 95% CI 0.96-1.04; p value 0.59). CONCLUSIONS: Lower thyroid status leads to an unfavorable lipid profile and a somewhat increased cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares , Tirotropina , Adulto , Anciano , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Femenino , Humanos , Lípidos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Tiroxina , Adulto Joven
14.
BMC Med ; 19(1): 69, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33731105

RESUMEN

BACKGROUND: Sleep traits are associated with cardiometabolic disease risk, with evidence from Mendelian randomization (MR) suggesting that insomnia symptoms and shorter sleep duration increase coronary artery disease risk. We combined adjusted multivariable regression (AMV) and MR analyses of phenotypes of unfavourable sleep on 113 metabolomic traits to investigate possible biochemical mechanisms linking sleep to cardiovascular disease. METHODS: We used AMV (N = 17,368) combined with two-sample MR (N = 38,618) to examine effects of self-reported insomnia symptoms, total habitual sleep duration, and chronotype on 113 metabolomic traits. The AMV analyses were conducted on data from 10 cohorts of mostly Europeans, adjusted for age, sex, and body mass index. For the MR analyses, we used summary results from published European-ancestry genome-wide association studies of self-reported sleep traits and of nuclear magnetic resonance (NMR) serum metabolites. We used the inverse-variance weighted (IVW) method and complemented this with sensitivity analyses to assess MR assumptions. RESULTS: We found consistent evidence from AMV and MR analyses for associations of usual vs. sometimes/rare/never insomnia symptoms with lower citrate (- 0.08 standard deviation (SD)[95% confidence interval (CI) - 0.12, - 0.03] in AMV and - 0.03SD [- 0.07, - 0.003] in MR), higher glycoprotein acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06SD [0.03, 0.10) in MR]), lower total very large HDL particles (- 0.04SD [- 0.08, 0.00] in AMV and - 0.05SD [- 0.09, - 0.02] in MR), and lower phospholipids in very large HDL particles (- 0.04SD [- 0.08, 0.002] in AMV and - 0.05SD [- 0.08, - 0.02] in MR). Longer total sleep duration associated with higher creatinine concentrations using both methods (0.02SD per 1 h [0.01, 0.03] in AMV and 0.15SD [0.02, 0.29] in MR) and with isoleucine in MR analyses (0.22SD [0.08, 0.35]). No consistent evidence was observed for effects of chronotype on metabolomic measures. CONCLUSIONS: Whilst our results suggested that unfavourable sleep traits may not cause widespread metabolic disruption, some notable effects were observed. The evidence for possible effects of insomnia symptoms on glycoprotein acetyls and citrate and longer total sleep duration on creatinine and isoleucine might explain some of the effects, found in MR analyses of these sleep traits on coronary heart disease, which warrant further investigation.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedades Metabólicas , Sueño , Anciano , Enfermedad de la Arteria Coronaria/epidemiología , Creatinina/metabolismo , Estudios Transversales , Humanos , Isoleucina/metabolismo , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/epidemiología , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Riesgo
15.
Metabolomics ; 17(6): 57, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34106350

RESUMEN

BACKGROUND: Insulin is the key regulator of glucose metabolism, but it is difficult to dissect direct insulin from glucose-induced effects. We aimed to investigate the effects of hyperinsulemia on metabolomic measures under euglycemic conditions in nondiabetic participants. METHODS: We assessed concentrations of 151 metabolomic measures throughout a two-step hyperinsulinemic euglycemic clamp procedure. We included 24 participants (50% women, mean age = 62 [s.d. = 4.2] years) and metabolomic measures were assessed under baseline, low-dose (10 mU/m2/min) and high-dose (40 mU/m2/min) insulin conditions. The effects of low- and high-dose insulin infusion on metabolomic measures were analyzed using linear mixed-effect models for repeated measures. RESULTS: After low-dose insulin infusion, 90 metabolomic measures changed in concentration (p < 1.34e-4), among which glycerol (beta [Confidence Interval] = - 1.41 [- 1.54, - 1.27] s.d., p = 1.28e-95) and three-hydroxybutyrate (- 1.22 [- 1.36, - 1.07] s.d., p = 1.44e-61) showed largest effect sizes. After high-dose insulin infusion, 121 metabolomic measures changed in concentration, among which branched-chain amino acids showed the largest additional decrease compared with low-dose insulin infusion (e.g., Leucine, - 1.78 [- 1.88, - 1.69] s.d., P = 2.7e-295). More specifically, after low- and high-dose insulin infusion, the distribution of the lipoproteins shifted towards more LDL-sized particles with decreased mean diameters. CONCLUSION: Metabolomic measures are differentially insulin sensitive and may thus be differentially affected by the development of insulin resistance. Moreover, our data suggests insulin directly affects metabolomic measures previously associated with increased cardiovascular disease risk.


Asunto(s)
Resistencia a la Insulina , Glucemia , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Insulina , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
16.
FASEB J ; 34(4): 5525-5537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32141137

RESUMEN

Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.


Asunto(s)
Biología Computacional/métodos , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Cadenas Pesadas de Miosina/metabolismo , Femenino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
17.
BMC Med Res Methodol ; 21(1): 7, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407157

RESUMEN

BACKGROUND: Although human longevity tends to cluster within families, genetic studies on longevity have had limited success in identifying longevity loci. One of the main causes of this limited success is the selection of participants. Studies generally include sporadically long-lived individuals, i.e. individuals with the longevity phenotype but without a genetic predisposition for longevity. The inclusion of these individuals causes phenotype heterogeneity which results in power reduction and bias. A way to avoid sporadically long-lived individuals and reduce sample heterogeneity is to include family history of longevity as selection criterion using a longevity family score. A main challenge when developing family scores are the large differences in family size, because of real differences in sibship sizes or because of missing data. METHODS: We discussed the statistical properties of two existing longevity family scores: the Family Longevity Selection Score (FLoSS) and the Longevity Relatives Count (LRC) score and we evaluated their performance dealing with differential family size. We proposed a new longevity family score, the mLRC score, an extension of the LRC based on random effects modeling, which is robust for family size and missing values. The performance of the new mLRC as selection tool was evaluated in an intensive simulation study and illustrated in a large real dataset, the Historical Sample of the Netherlands (HSN). RESULTS: Empirical scores such as the FLOSS and LRC cannot properly deal with differential family size and missing data. Our simulation study showed that mLRC is not affected by family size and provides more accurate selections of long-lived families. The analysis of 1105 sibships of the Historical Sample of the Netherlands showed that the selection of long-lived individuals based on the mLRC score predicts excess survival in the validation set better than the selection based on the LRC score . CONCLUSIONS: Model-based score systems such as the mLRC score help to reduce heterogeneity in the selection of long-lived families. The power of future studies into the genetics of longevity can likely be improved and their bias reduced, by selecting long-lived cases using the mLRC.


Asunto(s)
Composición Familiar , Longevidad , Sesgo , Simulación por Computador , Humanos , Longevidad/genética , Países Bajos
18.
Nature ; 518(7538): 187-196, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25673412

RESUMEN

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.


Asunto(s)
Tejido Adiposo/metabolismo , Distribución de la Grasa Corporal , Estudio de Asociación del Genoma Completo , Insulina/metabolismo , Sitios de Carácter Cuantitativo/genética , Adipocitos/metabolismo , Adipogénesis/genética , Factores de Edad , Índice de Masa Corporal , Epigénesis Genética , Europa (Continente)/etnología , Femenino , Genoma Humano/genética , Humanos , Resistencia a la Insulina/genética , Masculino , Modelos Biológicos , Neovascularización Fisiológica/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple/genética , Grupos Raciales/genética , Caracteres Sexuales , Transcripción Genética/genética , Relación Cintura-Cadera
19.
Nature ; 518(7538): 197-206, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25673413

RESUMEN

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Adiposidad/genética , Factores de Edad , Metabolismo Energético/genética , Europa (Continente)/etnología , Femenino , Predisposición Genética a la Enfermedad/genética , Ácido Glutámico/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Masculino , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Grupos Raciales/genética , Sinapsis/metabolismo
20.
Metabolomics ; 16(3): 35, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32124065

RESUMEN

INTRODUCTION: Several plasma metabolites have been associated with insulin resistance and type 2 diabetes mellitus. OBJECTIVES: We aimed to identify plasma metabolites associated with different indices of early disturbances in glucose metabolism and insulin sensitivity. METHODS: This cross-sectional study was conducted in a subsample of the Leiden Longevity Study comprising individuals without a history of diabetes mellitus (n = 233) with a mean age of 63.3 ± 6.7 years of which 48.1% were men. We tested for associations of fasting glucose, fasting insulin, HOMA-IR, Matsuda Index, Insulinogenic Index and glycated hemoglobin with metabolites (Swedish Metabolomics Platform) using linear regression analysis adjusted for age, sex and BMI. Results were validated internally using an independent metabolomics platform (Biocrates platform) and replicated externally in the independent Netherlands Epidemiology of Obesity (NEO) study (Metabolon platform) (n = 545, mean age of 55.8 ± 6.0 years of which 48.6% were men). Moreover, in the NEO study, we replicated our analyses in individuals with diabetes mellitus (cases: n = 36; controls = 561). RESULTS: Out of the 34 metabolites, a total of 12 plasma metabolites were associated with different indices of disturbances in glucose metabolism and insulin sensitivity in individuals without diabetes mellitus. These findings were validated using a different metabolomics platform as well as in an independent cohort of non-diabetics. Moreover, tyrosine, alanine, valine, tryptophan and alpha-ketoglutaric acid levels were higher in individuals with diabetes mellitus. CONCLUSION: We found several plasma metabolites that are associated with early disturbances in glucose metabolism and insulin sensitivity of which five were also higher in individuals with diabetes mellitus.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Metabolómica , Anciano , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Femenino , Humanos , Insulina/sangre , Modelos Lineales , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA