Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30126924

RESUMEN

Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well-characterized autophagy-related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2- and DFCP1-positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and ß-oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER-localized regulator of autophagosome biogenesis and lipid mobilization.


Asunto(s)
Autofagia/fisiología , Movilización Lipídica/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Homeostasis , Humanos , Lentivirus , Gotas Lipídicas/metabolismo , Movilización Lipídica/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Nat Commun ; 15(1): 4584, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811577

RESUMEN

Stimulator of interferon genes (STING) is a central component of the cytosolic nucleic acids sensing pathway and as such master regulator of the type I interferon response. Due to its critical role in physiology and its' involvement in a variety of diseases, STING has been a focus for drug discovery. Targeted protein degradation (TPD) has emerged as a promising pharmacology for targeting previously considered undruggable proteins by hijacking the cellular ubiquitin proteasome system (UPS) with small molecules. Here, we identify AK59 as a STING degrader leveraging HERC4, a HECT-domain E3 ligase. Additionally, our data reveals that AK59 is effective on the common pathological STING mutations, suggesting a potential clinical application of this mechanism. Thus, these findings introduce HERC4 to the fields of TPD and of compound-induced degradation of STING, suggesting potential therapeutic applications.


Asunto(s)
Proteínas de la Membrana , Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteolisis/efectos de los fármacos , Células HEK293 , Animales , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
3.
Nat Commun ; 15(1): 275, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177131

RESUMEN

Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.


Asunto(s)
Proteínas Portadoras , Quimera Dirigida a la Proteólisis , Ubiquitina-Proteína Ligasas , Proteínas Portadoras/metabolismo , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
ACS Pharmacol Transl Sci ; 4(1): 327-337, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615182

RESUMEN

Asparagine deprivation by l-asparaginase (L-ASNase) is an effective therapeutic strategy in acute lymphoblastic leukemia, with resistance occurring due to upregulation of ASNS, the only human enzyme synthetizing asparagine (Annu. Rev. Biochem. 2006, 75 (1), 629-654). l-Asparaginase efficacy in solid tumors is limited by dose-related toxicities (OncoTargets and Therapy 2017, pp 1413-1422). Large-scale loss of function genetic in vitro screens identified ASNS as a cancer dependency in several solid malignancies (Cell 2017, 170 (3), 564-576.e16. Cell 2017, 170 (3), 577-592.e10). Here we evaluate the therapeutic potential of targeting ASNS in melanoma cells. While we confirm in vitro dependency on ASNS silencing, this is largely dispensable for in vivo tumor growth, even in the face of asparagine deprivation, prompting us to characterize such a resistance mechanism to devise novel therapeutic strategies. Using ex vivo quantitative proteome and transcriptome profiling, we characterize the compensatory mechanism elicited by ASNS knockout melanoma cells allowing their survival. Mechanistically, a genome-wide CRISPR screen revealed that such a resistance mechanism is elicited by a dual axis: GCN2-ATF4 aimed at restoring amino acid levels and MAPK-BCLXL to promote survival. Importantly, pharmacological inhibition of such nodes synergizes with l-asparaginase-mediated asparagine deprivation in ASNS deficient cells suggesting novel potential therapeutic combinations in melanoma.

5.
Elife ; 82019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31741433

RESUMEN

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Proteínas Cullin , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Metionil Aminopeptidasas/metabolismo , Ratones , Ratones Desnudos , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligasas/genética , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA/metabolismo
6.
J Biotechnol ; 161(3): 336-48, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22814405

RESUMEN

Glycosylation is one of the most common posttranslational modifications of proteins. It has important roles for protein structure, stability and functions. In vivo the glycostructures influence pharmacokinetics and immunogenecity. It is well known that significant differences in glycosylation and glycostructures exist between recombinant proteins expressed in mammalian, yeast and insect cells. However, differences in protein glycosylation between different mammalian cell lines are much less well known. In order to examine differences in glycosylation in mammalian cells we have expressed 12 proteins in the two commonly used cell lines HEK and CHO. The cells were transiently transfected, and the expressed proteins were purified. To identify differences in glycosylation the proteins were analyzed on SDS-PAGE, isoelectric focusing (IEF), mass spectrometry and released glycans on capillary gel electrophoresis (CGE-LIF). For all proteins significant differences in the glycosylation were detected. The proteins migrated differently on SDS-PAGE, had different isoform patterns on IEF, showed different mass peak distributions on mass spectrometry and showed differences in the glycostructures detected in CGE. In order to verify that differences detected were attributed to glycosylation the proteins were treated with deglycosylating enzymes. Although, culture conditions induced minor changes in the glycosylation the major differences were between the two cell lines.


Asunto(s)
Proteínas Recombinantes/metabolismo , Animales , Células CHO , Cricetinae , Electroforesis Capilar , Electroforesis en Gel de Poliacrilamida , Glicosilación , Células HEK293 , Humanos , Focalización Isoeléctrica , Espectrometría de Masas , Peso Molecular , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polisacáridos/química , Proteínas Recombinantes/aislamiento & purificación , Estándares de Referencia , Reproducibilidad de los Resultados , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA