RESUMEN
BACKGROUND: To control the spread of COVID-19, Iran has adopted rigorous precautionary and preventive measures, particularly for vulnerable groups. Considering the effects of knowledge and attitudes about COVID-19 on adherence to preventive measures, we examined women's knowledge, attitudes, and practices (KAP) from pregnancy to 6 weeks postpartum about COVID-19 during this pandemic. METHODS: In a cross-sectional study, 7363 women were recruited via an online questionnaire between June 23, 2021 and July 7, 2021. The questionnaire consisted of 27 questions, measuring KAP. RESULTS: Most of the participants had a good understanding of COVID-19 (Mean: 7.30 out of 9, standard deviation [SD]: 1.27), but the knowledge of the disease's main symptoms and modes of transmission was at the lowest levels. The mean attitudes score was 31.47 out of 50 (SD: 7.70). The participants had good practices against COVID-19 with a mean score of 35.48 out of 40 (SD: 3.94). To reduce anxiety and fear during the pandemic, half of our participants strongly emphasized the role of family emotional support. Income status and educational levels were the most significant variables influencing KAP (p-value ≤0.001). A correlation was found between knowledge and practice scores (r = 0.205, p-value = 0.001). CONCLUSION: Our findings may serve to formulate awareness-raising interventions and can be a guide to health policymakers and workers such as obstetricians, clinicians, and midwives for more effective educational communication emphasizing the COVID-19 symptoms and transmission modes and rendering appropriate counseling, particularly on the importance of emotional family support during the pandemic.
Asunto(s)
COVID-19 , Embarazo , Humanos , Femenino , COVID-19/prevención & control , Irán/epidemiología , SARS-CoV-2 , Estudios Transversales , Conocimientos, Actitudes y Práctica en Salud , Encuestas y Cuestionarios , Periodo PospartoRESUMEN
Hearing loss (HL) is an etiologically heterogeneous disorder that affects around 5% of the world's population. There has been an exponential increase in the identification of genes and variants responsible for hereditary HL over recent years. Iran, a country located in the Middle East, has a high prevalence of consanguineous marriages, so heterogeneous diseases such as HL are more common. Comprehensive studies using different strategies from linkage analysis to next-generation sequencing, especially exome-sequencing, have achieved significant success in identifying possible pathogens in deaf Iranian families. About 12% of non-syndromic autosomal recessive HL genes investigated to date, were first identified in families from Iran. Variations of 56 genes have been observed in families with NSHL in Iran. Variants in GJB2, SLC26A4, MYO15A, MYO7A, CDH23, and TMC1 account for 16.5%, 16.25%, 13.5%, 9.35%, 6.9% and 4.92%, cases of NSHL, respectively. In summary, there are also different diagnostic rates between studies conducted in Iran. In the comprehensive investigations conducted by the Genetic Research Center of the University of Social Welfare and Rehabilitation Sciences over the past 20 years, the overall diagnosis rate is about 80% while there are other studies with lower diagnostic rates which could reflect differences in project designs, sampling, and accuracy and validity of the methods used. Furthermore, there are several syndromic HHLs in Iran including, Waardenburg syndrome, BOR syndrome, Brown-Vialetto-Van Laere syndrome, Wolfram syndrome, among which Pendred and Usher syndromes are well-studied. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran.
Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Sordera/genética , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Irán/epidemiología , Mutación , LinajeRESUMEN
Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.
Asunto(s)
Etnicidad/genética , Variación Genética/genética , Adulto , Anciano , Consanguinidad , Femenino , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Irán/etnología , Masculino , Persona de Mediana EdadRESUMEN
Mutations in adaptor protein complex-4 (AP-4) genes have first been identified in 2009, causing a phenotype termed as AP-4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotype-phenotype correlation of the AP-4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected disease-causing variants in AP-4 complex subunits, using next-generation sequencing. Furthermore, by comparing genotype-phenotype findings of those affected individuals with previously reported patients, we further refine the genotype-phenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the AP-4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders.
Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Cuadriplejía/genética , Complejo 4 de Proteína Adaptadora/deficiencia , Adolescente , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , Estudios de Cohortes , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Irán/epidemiología , Masculino , Mutación/genética , Linaje , Fenotipo , Cuadriplejía/diagnóstico por imagen , Cuadriplejía/patologíaRESUMEN
Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.
Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Secuenciación del Exoma/métodos , Adulto JovenRESUMEN
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Asunto(s)
Genes Recesivos/genética , Discapacidad Intelectual/genética , Adulto , Consanguinidad , Exoma/genética , Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Mapas de Interacción de Proteínas/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodosRESUMEN
Considering the application of human genome variation databases in precision medicine, population-specific genome projects are continuously being developed. However, the Middle Eastern population is underrepresented in current databases. Accordingly, we established Iranome database (www.iranome.com) by performing whole exome sequencing on 800 individuals from eight major Iranian ethnic groups representing the second largest population of Middle East. We identified 1,575,702 variants of which 308,311 were novel (19.6%). Also, by presenting higher frequency for 37,384 novel or known rare variants, Iranome database can improve the power of molecular diagnosis. Moreover, attainable clinical information makes this database a good resource for classifying pathogenicity of rare variants. Principal components analysis indicated that, apart from Iranian-Baluchs, Iranian-Turkmen, and Iranian-Persian Gulf Islanders, who form their own clusters, rest of the population were genetically linked, forming a super-population. Furthermore, only 0.6% of novel variants showed counterparts in "Greater Middle East Variome Project", emphasizing the value of Iranome at national level by releasing a comprehensive catalog of Iranian genomic variations and also filling another gap in the catalog of human genome variations at international level. We introduce Iranome as a resource which may also be applicable in other countries located in neighboring regions historically called Greater Iran (Persia).
Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Etnicidad/genética , Genoma Humano , Genómica , Navegador Web , Variación Genética , Genética de Población , Genómica/métodos , Genotipo , Geografía , Humanos , Irán , Medio Oriente , Anotación de Secuencia MolecularRESUMEN
Neurodevelopmental delay and intellectual disability (ID) can arise from numerous genetic defects. To date, variants in the EXOSC gene family have been associated with such disorders. Using next-generation sequencing (NGS), known and novel variants in this gene family causing autosomal recessive ID (ARID) have been identified in five Iranian families. By collecting clinical information on these families and comparing their phenotypes with previously reported patients, we further describe the clinical variability of ARID resulting from alterations in the EXOSC gene family, and emphasize the role of RNA processing dysregulation in ARID.
Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Genes Recesivos , Discapacidad Intelectual/genética , Niño , Preescolar , Estudios de Cohortes , Consanguinidad , Familia , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Irán , Masculino , Mutación , Linaje , Secuenciación del ExomaRESUMEN
In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in near- and middle-east countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but because of the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole-exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6-fold, and about 4.1 to 4.25-fold for children of first-cousin unions. These results do not rhyme with recent opinions that consanguinity-related health risks are generally small and have been "overstated" in the past.
Asunto(s)
Genes Recesivos , Endogamia , Discapacidad Intelectual/genética , Consanguinidad , Exoma/genética , Familia , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Irán/epidemiología , Masculino , Medio Oriente/epidemiología , Mutación , Linaje , Secuenciación del ExomaRESUMEN
BACKGROUND: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN: Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS: We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION: This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.
Asunto(s)
Pérdida Auditiva/genética , Conexina 26 , Conexinas , Consanguinidad , Efecto Fundador , Frecuencia de los Genes , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/patología , Humanos , IránRESUMEN
BACKGROUND: An obvious gradient in health outcomes has been implicated in many evidences relating to social and economic factors. Proper data are requested to convince policy-makers calling for intersectoral action for health. Recently, I.R. of Iran has come up with 52 health equity indicators to monitor health equity through the country. Conducting regular surveys on 14 out of 52 national health equity indicators is needed to provide a basis for the health inequality analysis through the country. We aimed to introduce a survey tool and its related protocols on health equity indicators. METHODS: This study was conducted through addressing the literature and expertise of health and demographic surveys at the national and international levels. Also, we conducted technical and consultative committee meetings, a final consensus workshop and a pilot study to finalize the survey tool. RESULTS: We defined the study design, sampling method, reliable questionnaires and instructions, data collection and supervision procedure. We also defined the data analysis protocol on health equity indicators, generated from non-routine data. CONCLUSION: A valid and reliable tool, which could be employed at the national and sub-national levels, was designed to measure health equity in Iran. Policy-makers can use this survey tool to generate useful information and evidence to design appropriate required intervention and reduce health inequality across the country.
RESUMEN
BACKGROUND: The study of Y-chromosomal variations provides valuable insights into male susceptibility in certain diseases like cardiovascular disease (CVD). In this study, we analyzed paternal lineage in different Iranian ethnic groups, not only to identify developing medical etiology, but also to pave the way for gender-specific targeted strategies and personalized medicine in medical genetic research studies. METHODS: The diversity of eleven Iranian ethnic groups was studied using 27 Y-chromosomal short tandem repeat (Y-STR) haplotypes from Y-filer® Plus kit. Analysis of molecular variance (AMOVA) based on pair-wise RST along with multidimensional scaling (MDS) calculation and Network phylogenic analysis was employed to quantify the differences between 503 unrelated individuals from each ethnicity. RESULTS: Results from AMOVA calculation confirmed that Gilaks and Azeris showed the largest genetic distance (RST=0.35434); however, Sistanis and Lurs had the smallest considerable genetic distance (RST=0.00483) compared to other ethnicities. Although Azeris had a considerable distance from other ethnicities, they were still close to Turkmens. MDS analysis of ethnic groups gave the indication of lack of similarity between different ethnicities. Besides, network phylogenic analysis demonstrated insignificant clustering between samples. CONCLUSION: The AMOVA analysis results explain that the close distance of Azeris and Turkmens may be the effect of male-dominant expansions across Central Asia that contributed to historical and demographics of populations in the region. Insignificant differences in network analysis could be the consequence of high mutation events that happened in the Y-STR regions over the years. Considering the ethnic group affiliations in medical research, our results provided an understanding and characterization of Iranian male population for future medical and population genetics studies.
Asunto(s)
Investigación Biomédica , Etnicidad , Humanos , Masculino , Etnicidad/genética , Haplotipos , Irán , Análisis de VarianzaRESUMEN
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
RESUMEN
BACKGROUND: Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS: First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS: We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION: To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Irán/epidemiología , Familia , Mutación , Linaje , Consanguinidad , Genes RecesivosRESUMEN
OBJECTIVE: The objective of this study was to evaluate the effects of maternal coronavirus disease 2019 (COVID-19) vaccination on preventing severe complications of COVID-19 in pregnant women. METHODS: A retrospective study was conducted in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during pregnancy and/or for up to 6 weeks postpartum between September 1, 2021, to January 30, 2022. The data was retrieved from a national database. The pregnant women were divided into two groups of vaccinated and unvaccinated. The proposed outcomes (the need for hospitalization, intensive care unit admission, and mechanical ventilation and products of conception complications) were compared between the two groups. RESULTS: Approximately 90 000 pregnant women infected with COVID-19 were included in the study. The data of the vaccinated (19 922) and unvaccinated (70 147) groups were analyzed and compared. Pregnant patients in the vaccinated group had a significantly lower rate of hospitalization (21.2% vs 29.4%) (odds ratio [OR], 0.648 [95% confidence interval (CI), 0.625-0.673], P = 0.0001) and intensive care unit admission (3.7% vs 7.8%) (OR, 0.453 [95% CI, 0.382-0.535], P = 0.0001). The need for mechanical ventilation was also lower, although not statistically significant, in the vaccinated group than in the unvaccinated group (30 of 155 [19.4%] vs 418 of 1597 [26.2%]) (OR, 0.677 [95% CI, 0.448-1.024], P = 0.063). Cesarean section (54.3% vs 58.1%) (OR, 0.856 [95% CI, 0.751-0.977], P = 0.021) and stillbirth (0.4% vs 3.6%) (OR, 0.097 [95% CI, 0.026-0.252], P = 0.0001) were also significantly lower in the vaccinated patients. Most pregnant women in the vaccinated group (18 484-96.14%) received Sinopharm BIBP COVID-19 inactivated vaccine. No significant differences were seen in the effect of different types of COVID-19 vaccines on reducing COVID-19 complications in infected pregnant patients. CONCLUSION: Maternal COVID-19 immunization is effective in reducing COVID-19 complications in infected pregnant women.
Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Embarazo , Humanos , Femenino , COVID-19/prevención & control , Vacunas contra la COVID-19 , Irán/epidemiología , SARS-CoV-2 , Cesárea , Estudios Retrospectivos , Vacunación , Complicaciones Infecciosas del Embarazo/prevención & control , Resultado del EmbarazoRESUMEN
BACKGROUND: Global real-time monitoring of SARS-CoV-2 variants is crucial to controlling the COVID-19 outbreak. The purpose of this study was to set up a Sanger-based platform for massive SARS-CoV-2 variant tracking in laboratories in low-resource settings. METHODS: We used nested RT-PCR assay, Sanger sequencing and lineage assignment for 930-bp of the SARS-CoV-2 spike gene, which harbors specific variants of concern (VOCs) mutations. We set up our platform by comparing its results with whole genome sequencing (WGS) data on 137 SARS-CoV-2 positive samples. Then, we applied it on 1028 samples from March-September 2021. RESULTS: In total, 125 out of 137 samples showed 91.24% concordance in mutation detection. In lineage assignment, 123 out of 137 samples demonstrated 89.78% concordance, 65 of which were assigned as VOCs and showed 100% concordance. Of 1028 samples screened by our in-house method, 78 distinct mutations were detected. The most common mutations were: S:D614G (21.91%), S:P681R (12.19%), S:L452R (12.15%), S:T478K (12.15%), S:N501Y (8.91%), S:A570D (8.89%), S:P681H (8.89%), S:T716I (8.74%), S:L699I (3.50%) and S:S477N (0.28%). Of 1028 samples, 980 were attributed as VOCs, which include the Delta (B.1.617.2) and Alpha (B.1.1.7) variants. CONCLUSION: Our proposed in-house Sanger-based assay for SARS-CoV-2 lineage assignment is an accessible strategy in countries with poor infrastructure facilities. It can be applied in the rapid tracking of SARS-CoV-2 VOCs in the SARS-CoV-2 pandemic.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Brotes de Enfermedades , Laboratorios , MutaciónRESUMEN
BACKGROUND: Guanine nucleotide exchange factors (GEFs) play pivotal roles in neuronal cell functions by exchanging GDP to GTP nucleotide and activation of GTPases. We aimed to determine the genotype and phenotype spectrum of GEF mutations by collecting data from a large Iranian cohort with intellectual disability (ID) and/or developmental delay (DD). METHODS: We collected data from nine families with 20 patients extracted from Iranian cohort of 640 families with ID and/or DD. Next-generation sequencing (NGS) was used to identify the causing variants in recruited families. We also compared our clinical and molecular findings with previously reported patients carrying mutations in these GEF genes in the literature published until mid-2021. RESULTS: We identified disease-causing variants in eight GEF genes including ALS2, IQSEC2, MADD, RAB3GAP1, RAB3GAP2, TRIO, ITSN1, and DENND2A. The major clinical manifestations in 203 previously reported cases along with our 20 patients with disease causing variants in eight GEF genes were as follow; speech disorder (85.2%), ID (81.6%), DD (81.1%), inability to walk (71.3%), facial dysmorphisms features (52.4%), abnormalities in skull morphology (55.6%), hypotonia and muscle weakness (47%), and brain MRI abnormalities (43.4%). CONCLUSION: Our study provides new insights into the genotype and phenotype spectrum of mutations in GEF genes.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Discapacidad Intelectual , Genotipo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Discapacidad Intelectual/genética , Irán , Fenotipo , Proteínas de Unión al GTP rab3/genéticaRESUMEN
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD), one of the common inherited disorders in humans, is characterized by the development and enlargement of renal cysts, often leading to end-stage renal disease (ESRD). In this study, Iranian ADPKD families were subjected to high-throughput DNA sequencing to find potential causative variants facilitating the way toward risk assessment and targeted therapy. METHODS: Our protocol was based on the targeted next generation sequencing (NGS) panel previously developed in our center comprising 12 genes involved in PKD. This panel has been applied to investigate the genetic causes of 32 patients with a clinical suspicion of ADPKD. RESULTS: We identified a total of 31 variants for 32 individuals, two of which were each detected in two individuals. Twenty-seven out of 31 detected variants were interpreted as pathogenic/likely pathogenic and the remaining 4 of uncertain significance with a molecular diagnostic success rate of 87.5%. Among these variants, 25 PKD1/2 pathogenic/likely pathogenic variants were detected in 32 index patients (78.1%), and variants of uncertain significance in four individuals (12.5% in PKD1/2). The majority of variants was identified in PKD1 (74.2%). Autosomal recessive PKD was identified in one patient, indicating the similarities between recessive and dominant PKD. In concordance with earlier studies, this biallelic PKD1 variant, p.Arg3277Cys, leads to rapidly progressive and severe disease with very early-onset ADPKD. CONCLUSION: Our findings suggest that targeted gene panel sequencing is expected to be the method of choice to improve diagnostic and prognostic accuracy in PKD patients with heterogeneity in genetic background.
Asunto(s)
Riñón Poliquístico Autosómico Dominante , Humanos , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Irán , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/diagnóstico , Canales Catiónicos TRPP/genéticaRESUMEN
BACKGROUND: Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS: In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS: In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION: The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Asunto(s)
Discapacidad Intelectual , Niño , Humanos , Discapacidad Intelectual/genética , Irán , Discapacidades del Desarrollo/genética , Mutación , Fenotipo , GenotipoRESUMEN
BACKGROUND: Complete SARS-CoV-2 genome sequencing in the early phase of the outbreak in Iran showed two independent viral entries. Subsequently, as part of a genome surveillance project, we aimed to characterize the genetic diversity of SARS-CoV-2 in Iran over one year after emerging. METHODS: We provided 319 SARS-CoV-2 whole-genome sequences used to monitor circulating lineages in March 2020-May 2021 time interval. RESULTS: The temporal dynamics of major SARS-CoV-2 clades/lineages circulating in Iran is comparable to the global perspective and represent the 19A clade (B.4) dominating the first disease wave, followed by 20A (B.1.36), 20B (B.1.1.413), 20I (B.1.1.7), leading the second, third and fourth waves, respectively. We observed a mixture of circulating B.1.36, B.1.1.413, B.1.1.7 lineages in winter 2021, paralleled in a fading manner for B.1.36/B.1.1.413 and a growing rise for B.1.1.7, prompting the fourth outbreak. Entry of the Delta variant, leading to the fifth disease wave in summer 2021, was detected in April 2021. This study highlights three lineages as hallmarks of the SARS-CoV-2 outbreak in Iran; B4, dominating early periods of the epidemic, B.1.1.413 (B.1.1 with the combination of [D138Y-S477N-D614G] spike mutations) as a characterizing lineage in Iran, and the co-occurrence of [I100T-L699I] spike mutations in half of B.1.1.7 sequences mediating the fourth peak. It also designates the renowned combination of G and GR clades' mutations as the top recurrent mutations. CONCLUSION: In brief, we provided a real-time and comprehensive picture of the SARS-CoV-2 genetic diversity in Iran and shed light on the SARS-CoV-2 transmission and circulation on the regional scale.