Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Ther ; 32(1): 124-139, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990494

RESUMEN

Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Humanos , Transducción Genética , Lentivirus/genética , Terapia Genética/métodos , Inmunidad Innata , Vectores Genéticos/genética , Antígenos CD34
2.
J Immunol ; 208(2): 444-453, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34893529

RESUMEN

SAMHD1 is a potent HIV-1 restriction factor that blocks reverse transcription in monocytes, dendritic cells and resting CD4+ T cells by decreasing intracellular dNTP pools. However, SAMHD1 may diminish innate immune sensing and Ag presentation, resulting in a weaker adaptive immune response. To date, the role of SAMHD1 on antiretroviral immunity remains unclear, as mouse SAMHD1 had no impact on murine retrovirus replication in prior in vivo studies. Here, we show that SAMHD1 significantly inhibits acute Friend retrovirus infection in mice. Pretreatment with LPS, a significant driver of inflammation during HIV-1 infection, further unmasked a role for SAMHD1 in influencing immune responses. LPS treatment in vivo doubled the intracellular dNTP levels in immune compartments of SAMHD1 knockout but not wild-type mice. SAMHD1 knockout mice exhibited higher plasma infectious viremia and proviral DNA loads than wild-type mice at 7 d postinfection (dpi), and proviral loads inversely correlated with a stronger CD8+ T cell response. SAMHD1 deficiency was also associated with weaker NK, CD4+ T and CD8+ T cell responses by 14 dpi and weaker neutralizing Ab responses by 28 dpi. Intriguingly, SAMHD1 influenced these cell-mediated immune (14 dpi) and neutralizing Ab (28 dpi) responses in male but not female mice. Our findings formally demonstrate SAMHD1 as an antiretroviral factor in vivo that could promote adaptive immune responses in a sex-dependent manner. The requirement for LPS to unravel the SAMHD1 immunological phenotype suggests that comorbidities associated with a "leaky" gut barrier may influence the antiviral function of SAMHD1 in vivo.


Asunto(s)
Inmunidad Adaptativa/inmunología , Virus de la Leucemia Murina de Friend/crecimiento & desarrollo , Lipopolisacáridos/farmacología , Infecciones por Retroviridae/prevención & control , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , ADN Viral/sangre , Femenino , Virus de la Leucemia Murina de Friend/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Retroviridae/virología , Transcripción Reversa/genética , Proteína 1 que Contiene Dominios SAM y HD/inmunología , Carga Viral
3.
Nature ; 559(7713): 269-273, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973723

RESUMEN

Aberrant activation of innate immune pathways is associated with a variety of diseases. Progress in understanding the molecular mechanisms of innate immune pathways has led to the promise of targeted therapeutic approaches, but the development of drugs that act specifically on molecules of interest remains challenging. Here we report the discovery and characterization of highly potent and selective small-molecule antagonists of the stimulator of interferon genes (STING) protein, which is a central signalling component of the intracellular DNA sensing pathway1,2. Mechanistically, the identified compounds covalently target the predicted transmembrane cysteine residue 91 and thereby block the activation-induced palmitoylation of STING. Using these inhibitors, we show that the palmitoylation of STING is essential for its assembly into multimeric complexes at the Golgi apparatus and, in turn, for the recruitment of downstream signalling factors. The identified compounds and their derivatives reduce STING-mediated inflammatory cytokine production in both human and mouse cells. Furthermore, we show that these small-molecule antagonists attenuate pathological features of autoinflammatory disease in mice. In summary, our work uncovers a mechanism by which STING can be inhibited pharmacologically and demonstrates the potential of therapies that target STING for the treatment of autoinflammatory disease.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Línea Celular , Cisteína/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Enfermedades Autoinflamatorias Hereditarias/tratamiento farmacológico , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Humanos , Lipoilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/metabolismo
4.
J Immunol ; 199(7): 2261-2269, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835460

RESUMEN

Biallelic mutations of three prime repair exonuclease 1 (TREX1) cause the lupus-like disease Aicardi-Goutières syndrome in which accumulation of a yet unknown endogenous DNA substrate of TREX1 triggers a cyclic GMP-AMP synthase-dependent type I IFN response and systemic autoimmunity. Products of reverse transcription originating from endogenous retroelements have been suggested to be a major substrate for TREX1, and reverse transcriptase inhibitors (RTIs) were proposed as a therapeutic option in autoimmunity ensuing from defects of TREX1. In this study, we treated Trex1-/- mice with RTIs. The serum RTI levels reached were sufficient to block retrotransposition of endogenous retroelements. However, the treatment did not reduce the spontaneous type I IFN response and did not ameliorate lethal inflammation. Furthermore, long interspersed nuclear elements 1 retrotransposition was not enhanced in the absence of Trex1. Our data do not support the concept of retroelement-derived cDNA as key triggers of systemic autoimmunity in Trex1-deficient humans and mice and motivate the continuing search for the pathogenic IFN-inducing Trex1 substrate.


Asunto(s)
Autoinmunidad , Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/metabolismo , Inhibidores de la Transcriptasa Inversa/sangre , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , ADN Complementario , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Células HeLa , Humanos , Inflamación , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , Mutación , Malformaciones del Sistema Nervioso/inmunología , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Retroelementos , Inhibidores de la Transcriptasa Inversa/efectos adversos , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Transcripción Reversa
5.
J Immunol ; 197(6): 2157-66, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27511730

RESUMEN

Defects of the intracellular enzyme 3' repair exonuclease 1 (Trex1) cause the rare autoimmune condition Aicardi-Goutières syndrome and are associated with systemic lupus erythematosus. Trex1(-/-) mice develop type I IFN-driven autoimmunity, resulting from activation of the cytoplasmic DNA sensor cyclic GMP-AMP synthase by a nucleic acid substrate of Trex1 that remains unknown. To identify cell types responsible for initiation of autoimmunity, we generated conditional Trex1 knockout mice. Loss of Trex1 in dendritic cells was sufficient to cause IFN release and autoimmunity, whereas Trex1-deficient keratinocytes and microglia produced IFN but did not induce inflammation. In contrast, B cells, cardiomyocytes, neurons, and astrocytes did not show any detectable response to the inactivation of Trex1. Thus, individual cell types differentially respond to the loss of Trex1, and Trex1 expression in dendritic cells is essential to prevent breakdown of self-tolerance ensuing from aberrant detection of endogenous DNA.


Asunto(s)
Autoinmunidad , Células Dendríticas/fisiología , Exodesoxirribonucleasas/fisiología , Fosfoproteínas/fisiología , Animales , Antígenos CD19/fisiología , Linfocitos B/fisiología , Encéfalo/inmunología , Exodesoxirribonucleasas/deficiencia , Interferón Tipo I/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/deficiencia
6.
Eur J Immunol ; 46(8): 2018-27, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27287239

RESUMEN

Regulatory mechanisms initiated by allergen-specific immunotherapy are mainly attributed to T cell derived IL-10. However, it has not been shown that T cell derived IL-10 is required for successful tolerance induction (TI). Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during TI in a murine model of allergic airway inflammation. While TI was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during TI were identified by using transcriptional reporter mice as T cells, B cells, and to a lesser extent DCs. Interestingly, TI was still effective in mice with T cell, B cell, B and T cell, or DC-specific IL-10 deficiency. In contrast, TI was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow (BM) chimera that lacked IL-10 only in nonhematopoetic cells. Taken together, allergen-specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen-specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells, or even DCs, suggesting a high degree of cellular redundancy in IL-10-mediated tolerance.


Asunto(s)
Células Dendríticas/inmunología , Hipersensibilidad/inmunología , Tolerancia Inmunológica , Inflamación/inmunología , Interleucina-10/genética , Linfocitos T Reguladores/inmunología , Alérgenos/inmunología , Animales , Linfocitos B/inmunología , Desensibilización Inmunológica , Interleucina-10/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
J Immunol ; 192(12): 5993-7, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24813208

RESUMEN

Cytosolic detection of DNA is crucial for the initiation of antiviral immunity but can also cause autoimmunity in the context of endogenous nucleic acids being sensed. Mutations in the human 3' repair exonuclease 1 (TREX1) have been linked to the type I IFN-associated autoimmune disease Aicardi-Goutières syndrome. The exact mechanisms driving unabated type I IFN responses in the absence of TREX1 are only partly understood, but it appears likely that accumulation of endogenous DNA species triggers a cell-autonomous immune response by activating a cytosolic DNA receptor. In this article, we demonstrate that knocking out the DNA sensor cyclic GMP-AMP synthase completely abrogates spontaneous induction of IFN-stimulated genes in TREX1-deficient cells. These findings indicate a key role of cyclic GMP-AMP synthase for the initiation of self-DNA-induced autoimmune disorders, thus providing important implications for novel therapeutic approaches.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Exodesoxirribonucleasas/inmunología , Malformaciones del Sistema Nervioso/inmunología , Nucleotidiltransferasas/inmunología , Fosfoproteínas/inmunología , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Exodesoxirribonucleasas/genética , Eliminación de Gen , Células HEK293 , Humanos , Ratones , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Nucleotidiltransferasas/genética , Fosfoproteínas/genética
8.
Retrovirology ; 12: 103, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667483

RESUMEN

BACKGROUND: Human SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies. RESULTS: We found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA. CONCLUSION: Our findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.


Asunto(s)
VIH-1/fisiología , Virus de la Leucemia Murina/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Infecciones por Retroviridae/virología , Transcripción Reversa , Animales , Línea Celular , Células Cultivadas , Humanos , Macrófagos/virología , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/deficiencia , Proteínas de Unión al GTP Monoméricas/genética , Células Mieloides/virología , Fosforilación , ARN Viral/genética , ARN Viral/metabolismo , Proteína 1 que Contiene Dominios SAM y HD , Treonina/fisiología , Replicación Viral
9.
PLoS Pathog ; 9(11): e1003735, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244162

RESUMEN

Chronic viral infections lead to CD8(+) T cell exhaustion, characterized by impaired cytokine secretion. Presence of the immune-regulatory cytokine IL-10 promotes chronicity of Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 infection, while absence of IL-10/IL-10R signaling early during infection results in viral clearance and higher percentages and numbers of antiviral, cytokine producing T cells. IL-10 is produced by several cell types during LCMV infection but it is currently unclear which cellular sources are responsible for induction of viral chronicity. Here, we demonstrate that although dendritic cells produce IL-10 and overall IL-10 mRNA levels decrease significantly in absence of CD11c(+) cells, absence of IL-10 produced by CD11c(+) cells failed to improve the LCMV-specific T cell response and control of LCMV infection. Similarly, NK cell specific IL-10 deficiency had no positive impact on the LCMV-specific T cell response or viral control, even though high percentages of NK cells produced IL-10 at early time points after infection. Interestingly, we found markedly improved T cell responses and clearance of normally chronic LCMV Clone 13 infection when either myeloid cells or T cells lacked IL-10 production and mice depleted of monocytes/macrophages or CD4(+) T cells exhibited reduced overall levels of IL-10 mRNA. These data suggest that the decision whether LCMV infection becomes chronic or can be cleared critically depends on early CD4(+) T cell and monocyte/macrophage produced IL-10.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-10/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Macrófagos/inmunología , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Interleucina-10/genética , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/inmunología
10.
Sci Adv ; 10(9): eadk0820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427731

RESUMEN

Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.


Asunto(s)
Enfermedades Autoinmunes , Ácidos Nucleicos , Humanos , Ratones , Animales , Autoinmunidad , ARN , Linfocitos T Reguladores , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
11.
J Clin Med ; 12(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36836134

RESUMEN

As the key enzyme mediating ribonucleotide excision repair, RNase H2 is essential for the removal of single ribonucleotides from DNA in order to prevent genome damage. Loss of RNase H2 activity directly contributes to the pathogenesis of autoinflammatory and autoimmune diseases and might further play a role in ageing and neurodegeneration. Moreover, RNase H2 activity is a potential diagnostic and prognostic marker in several types of cancer. Until today, no method for quantification of RNase H2 activity has been validated for the clinical setting. Herein, validation and benchmarks of a FRET-based whole-cell lysate RNase H2 activity assay are presented, including standard conditions and procedures to calculate standardized RNase H2 activity. Spanning a wide working range, the assay is applicable to various human cell or tissue samples with overall methodological assay variability from 8.6% to 16%. Using our assay, we found RNase H2 activity was reduced in lymphocytes of two patients with systemic lupus erythematosus and one with systemic sclerosis carrying heterozygous mutations in one of the RNASEH2 genes. Implementation of larger control groups will help to assess the diagnostic and prognostic value of clinical screening for RNase H2 activity in the future.

12.
J Mol Cell Biol ; 15(1)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36626927

RESUMEN

Radiotherapy induces DNA damage, resulting in cell-cycle arrest and activation of cell-intrinsic death pathways. However, the radioresistance of some tumour entities such as malignant melanoma limits its clinical application. The innate immune sensing receptor retinoic acid-inducible gene I (RIG-I) is ubiquitously expressed and upon activation triggers an immunogenic form of cell death in a variety of tumour cell types including melanoma. To date, the potential of RIG-I ligands to overcome radioresistance of tumour cells has not been investigated. Here, we demonstrate that RIG-I activation enhanced the extent and immunogenicity of irradiation-induced tumour cell death in human and murine melanoma cells in vitro and improved survival in the murine B16 melanoma model in vivo. Transcriptome analysis pointed to a central role for p53, which was confirmed using p53-/- B16 cells. In vivo, the additional effect of RIG-I in combination with irradiation on tumour growth was absent in mice carrying p53-/- B16 tumours, while the antitumoural response to RIG-I stimulation alone was maintained. Our results identify p53 as a pivotal checkpoint that is triggered by RIG-I resulting in enhanced irradiation-induced tumour cell death. Thus, the combined administration of RIG-I ligands and radiotherapy is a promising approach to treating radioresistant tumours with a functional p53 pathway, such as melanoma.


Asunto(s)
Melanoma Experimental , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Ligandos , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Inmunoterapia/métodos , Melanoma Cutáneo Maligno
13.
Cancer Res ; 83(17): 2858-2872, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335136

RESUMEN

Genome damage is a main driver of malignant transformation, but it also induces aberrant inflammation via the cGAS/STING DNA-sensing pathway. Activation of cGAS/STING can trigger cell death and senescence, thereby potentially eliminating genome-damaged cells and preventing against malignant transformation. Here, we report that defective ribonucleotide excision repair (RER) in the hematopoietic system caused genome instability with concomitant activation of the cGAS/STING axis and compromised hematopoietic stem cell function, ultimately resulting in leukemogenesis. Additional inactivation of cGAS, STING, or type I IFN signaling, however, had no detectable effect on blood cell generation and leukemia development in RER-deficient hematopoietic cells. In wild-type mice, hematopoiesis under steady-state conditions and in response to genome damage was not affected by loss of cGAS. Together, these data challenge a role of the cGAS/STING pathway in protecting the hematopoietic system against DNA damage and leukemic transformation. SIGNIFICANCE: Loss of cGAS/STING signaling does not impact DNA damage-driven leukemogenesis or alter steady-state, perturbed or malignant hematopoiesis, indicating that the cGAS/STING axis is not a crucial antioncogenic mechanism in the hematopoietic system. See related commentary by Zierhut, p. 2807.


Asunto(s)
Interferón Tipo I , Leucemia , Animales , Ratones , Hematopoyesis/genética , Interferón Tipo I/metabolismo , Leucemia/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal
14.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346347

RESUMEN

Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.


Asunto(s)
Interferón Tipo I , Ácidos Nucleicos , Ratones , Animales , Proteína 1 que Contiene Dominios SAM y HD/genética , Inmunidad Innata/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo
15.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723209

RESUMEN

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Asunto(s)
Lamina Tipo A , Macrófagos Alveolares , Animales , Ratones , Lamina Tipo A/genética , Membrana Nuclear , Pulmón , Envejecimiento/genética , Inestabilidad Genómica
16.
Mol Ther Methods Clin Dev ; 26: 394-412, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36034773

RESUMEN

Foamy viruses (FVs) or heterologous retroviruses pseudotyped with FV glycoprotein enable transduction of a great variety of target tissues of disparate species. Specific cellular entry receptors responsible for this exceptionally broad tropism await their identification. Though, ubiquitously expressed heparan sulfate proteoglycan (HS-PG) is known to serve as an attachment factor of FV envelope (Env)-containing virus particles, greatly enhancing target cell permissiveness. Production of high-titer, FV Env-containing retroviral vectors is strongly dependent on the use of cationic polymer-based transfection reagents like polyethyleneimine (PEI). We identified packaging cell-surface HS-PG expression to be responsible for this requirement. Efficient release of FV Env-containing virus particles necessitates neutralization of HS-PG binding sites by PEI. Remarkably, remnants of PEI in FV Env-containing vector supernatants, which are not easily removable, negatively impact target cell transduction, in particular those of myeloid and lymphoid origin. To overcome this limitation for production of FV Env-containing retrovirus supernatants, we generated 293T-based packaging cell lines devoid of HS-PG by genome engineering. This enabled, for the first, time production of inhibitor-free, high-titer FV Env-containing virus supernatants by non-cationic polymer-mediated transfection. Depending on the type of virus, produced titers were 2- to 10-fold higher compared with those obtained by PEI transfection.

17.
Front Immunol ; 13: 880413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634291

RESUMEN

Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3'repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5' flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Animales , Ratones , Malformaciones del Sistema Nervioso/patología , Nucleotidiltransferasas/metabolismo , Retroelementos , Replicación Viral
18.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35997679

RESUMEN

Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-ß, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-ß-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.


Asunto(s)
Interferón Tipo I , Ácidos Nucleicos , Vasculitis , Animales , Pulmón , Macrófagos , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas
19.
Pharmacol Ther ; 228: 107931, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34171328

RESUMEN

Infections of the Coronavirus SARS-CoV-2 continue to spread around the globe, causing Coronavirus Disease (COVID)-19. Infected people are at risk of developing acute interstitial pneumonia, which can result in lethal complications, particularly in patients with pre-existing co-morbidities. Novel prophylactic and therapeutic interventions are urgently needed to limit the infection-associated health risk for the population and to contain the pandemic. Animal models are indispensable to assessing the efficacy and safety of potential new antivirals, vaccines, and other innovative therapies, such as nucleic acid agonists of innate immune sensing receptors. In this review, we provide an overview of the commonly used animal models to study SARS-CoV-2 and COVID-19, including a summary of their susceptibility to infection, the spectrum of symptoms elicited, and the potential for drug development in each model. We hope that this review will help researchers to decide on the right model organism to quickly address their specific scientific questions.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Animales
20.
J Invest Dermatol ; 141(11): 2611-2619.e2, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33894197

RESUMEN

Loss of FLG causes ichthyosis vulgaris. Reduced FLG expression compromises epidermal barrier function and is associated with atopic dermatitis, allergy, and asthma. The flaky tail mouse harbors two mutations that affect the skin barrier, Flgft, resulting in hypomorphic FLG expression, and Tmem79ma, inactivating TMEM79. Mice defective only for TMEM79 featured dermatitis and systemic atopy, but also Flgft/ft BALB/c congenic mice developed eczema, high IgE, and spontaneous asthma, suggesting that FLG protects from atopy. In contrast, a targeted Flg-knockout mutation backcrossed to BALB/c did not result in dermatitis or atopy. To resolve this discrepancy, we generated FLG-deficient mice on pure BALB/c background by inactivating Flg in BALB/c embryos. These mice feature an ichthyosis phenotype, barrier defect, and facilitated percutaneous sensitization. However, they do not develop dermatitis or atopy. Whole-genome sequencing of the atopic Flgft BALB/c congenics revealed that they were homozygous for the atopy-causing Tmem79matted mutation. In summary, we show that FLG deficiency does not cause atopy in mice, in line with lack of atopic disease in a fraction of patients with ichthyosis vulgaris carrying two Flg null alleles. However, the absence of FLG likely promotes and modulates dermatitis caused by other genetic barrier defects.


Asunto(s)
Alérgenos/inmunología , Dermatitis Atópica/etiología , Proteínas Filagrina/fisiología , Hipersensibilidad/etiología , Ictiosis Vulgar/etiología , Piel/inmunología , Animales , Femenino , Proteínas Filagrina/deficiencia , Proteínas Filagrina/genética , Ictiosis Vulgar/genética , Ratones , Ratones Endogámicos BALB C , Microbiota , Piel/microbiología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA