Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Soc Mass Spectrom ; 34(6): 1073-1085, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186948

RESUMEN

Here we describe a state-of-the-art, integrated, multi-instrument automated system designed to execute methods involved in mass spectrometry characterization of biotherapeutics. The system includes liquid and microplate handling robotics and utilities, integrated LC-MS, along with data analysis software, to perform sample purification, preparation, and analysis as a seamless integrated unit. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants, which is initiated once the samples are loaded onto the automated system and the metadata are retrieved from our corporate data aggregation system. Subsequently, the purified protein samples are prepared for MS, including deglycosylation and reduction steps for intact and reduced mass analysis, and proteolytic digestions, desalting, and buffer exchange via centrifugation for peptide map analysis. The prepared samples are then loaded into the LC-MS instrumentation for data acquisition. The acquired raw data are initially stored on a local area network storage system that is monitored by watcher scripts that then upload the raw MS data to a network of cloud-based servers. The raw MS data are processed with the appropriately configured analysis workflows such as database search for peptide mapping or charge deconvolution for undigested proteins. The results are verified and formatted for expert curation directly in the cloud. Finally, the curated results are appended to sample metadata in the corporate data aggregation system to accompany the biotherapeutic cell lines in subsequent processes.


Asunto(s)
Péptidos , Proteínas , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Proteínas/química , Péptidos/química , Programas Informáticos
2.
J Mol Recognit ; 25(3): 174-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22407981

RESUMEN

There are a number of proteins whose active forms are non-covalent multichain complexes. Therapeutic intervention involving such complexes has been proposed through the use of muteins to form heterostructures. These resulting structures would either not be recognized by receptors or would be inactive competitive inhibitors to wild-type (wt) proteins. We have used tumor necrosis factor-α (TNF-α) to establish that it is possible to use mass spectrometry to monitor the non-covalent solution structure of therapeutically relevant proteins and correlate the results with binding data. Mass spectrometry is shown to be able to directly monitor the state of the solution complexes to within 5 Da errors mass accuracy of theoretical mass at 50 kDa, as well as to resolve homocomplex from heterocomplex. Furthermore, it was determined that perturbation of the TNF-α complex, at or below pH 4.0, results in monomers that cannot reform into the multimeric complex, and the resulting protein solution can no longer bind to an anti-TNF-α antibody. Dissociation and re-association of the trimer was possible with the use of dimethyl sulfoxide at pH 5.5 and allowed for the resulting detection of both homotrimer and heterotrimer in solution with no impact on antibody binding. This work demonstrates that mass spectrometric techniques offer a means to monitor native solution interactions of non-covalent complexes and to differentiate multiple complexes from each other in solution. This method has applicability in the biopharmaceutical arena for monitoring engineering non-covalent drug complexes for the purpose of altering biological activity.


Asunto(s)
Desnaturalización Proteica , Espectrometría de Masa por Ionización de Electrospray , Factor de Necrosis Tumoral alfa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dimetilsulfóxido/química , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína , Replegamiento Proteico , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Solventes/química , Factor de Necrosis Tumoral alfa/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-22771237

RESUMEN

This work details the transformation of a conventional HPLC system to a low back pressure liquid chromatography set-up for automated serum/plasma depletion and fractionation. A Dionex U3000 HPLC was converted to low back pressure operation (125 psi max) by replacing all narrow-bore lines to larger inner-diameter tubing. The system was configured to use two immunoaffinity columns, first for depletion of the top 14 most abundant proteins (Seppro IgY14), then for the next 200-300 proteins (Seppro SuperMix). The autosampler was dual-purposed for both injection and fraction collection. Both the flow-through and SuperMix bound proteins were collected in an automated fashion. Three samples could be depleted consecutively before the system required user intervention, and up to nine samples could be depleted within a 24 h period. This study documents the validation of the instrument performance with a 90-patient sample set, demonstrating overall CVs for 86 of the 90 samples to be within the 95% confidence intervals. Additionally, there was excellent reproducibility within the same patient (biological replicates) across days.


Asunto(s)
Proteínas Sanguíneas/aislamiento & purificación , Cromatografía de Afinidad/métodos , Cromatografía Líquida de Alta Presión/métodos , Área Bajo la Curva , Cromatografía de Afinidad/instrumentación , Cromatografía Líquida de Alta Presión/instrumentación , Humanos , Reproducibilidad de los Resultados
4.
J Gen Virol ; 88(Pt 10): 2719-2723, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17872524

RESUMEN

Chimeric 101F (ch101F) is a mouse-human chimeric anti-human respiratory syncytial virus (HRSV) neutralizing antibody that recognizes residues within antigenic site IV, V, VI of the fusion (F) glycoprotein. The binding of ch101F to a series of peptides overlapping aa 422-438 spanning antigenic site IV, V, VI was analysed. Residues 423-436 comprise the minimal peptide sequence for ch101F binding. Substitution analysis revealed that R429 and K433 are critical for ch101F binding, whilst K427 makes a minor contribution. Binding of ch101F to a series of single mutations at positions 427, 429 and 433 in the F protein expressed recombinantly on the cell surface confirmed the peptide results. Sequence analysis of viruses selected for resistance to neutralization by ch101F indicated that a single change (K433T) in the F protein allowed ch101F escape. The results confirm that ch101F and palivizumab have different epitope specificity and define key residues for ch101F recognition.


Asunto(s)
Virus Sincitial Respiratorio Humano/genética , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología , Vacunas Virales , Animales , Anticuerpos Monoclonales , Biotinilación , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Fragmentos de Péptidos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA