Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762335

RESUMEN

Canine inflammatory mammary cancer (IMC) is a highly aggressive and lethal cancer in dogs serving as a valuable animal model for its human counterpart, inflammatory breast cancer (IBC), both lacking effective therapies. Intratumoral immunotherapy (IT-IT) with empty cowpea mosaic virus (eCPMV) nanoparticles has shown promising results, demonstrating a reduction in tumor size, longer survival rates, and improved quality of life. This study compares the transcriptomic profiles of tumor samples from female dogs with IMC receiving eCPMV IT-IT and medical therapy (MT) versus MT alone. Transcriptomic analyses, gene expression profiles, signaling pathways, and cell type profiling of immune cell populations in samples from four eCPMV-treated dogs with IMC and four dogs with IMC treated with MT were evaluated using NanoString Technologies using a canine immune-oncology panel. Comparative analyses revealed 34 differentially expressed genes between treated and untreated samples. Five genes (CXCL8, S100A9, CCL20, IL6, and PTGS2) involved in neutrophil recruitment and activation were upregulated in the treated samples, linked to the IL17-signaling pathway. Cell type profiling showed a significant increase in neutrophil populations in the tumor microenvironment after eCPMV treatment. These findings highlight the role of neutrophils in the anti-tumor response mediated by eCPMV IT-IT and suggest eCPMV as a novel therapeutic approach for IBC/IMC.


Asunto(s)
Comovirus , Neoplasias Inflamatorias de la Mama , Humanos , Perros , Animales , Femenino , Transcriptoma , Neutrófilos , Calidad de Vida , Perfilación de la Expresión Génica , Microambiente Tumoral
2.
Mol Pharm ; 19(5): 1573-1585, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35333531

RESUMEN

In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon ß (IFNß) compared to TRSV and CPSMV; therefore, IFNß released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.


Asunto(s)
Vacunas contra el Cáncer , Comovirus , Neoplasias , Virus de Plantas , Secoviridae , Animales , Citocinas , Perros , Humanos , Inmunoterapia , Mamíferos , Ratones , Receptor Toll-Like 2 , Microambiente Tumoral
3.
Mol Pharm ; 19(2): 592-601, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34978197

RESUMEN

Viral immunotherapies are being recognized in cancer treatment, with several currently approved or undergoing clinical testing. While contemporary approaches have focused on oncolytic viral therapies, our efforts center on the development of plant virus-based cancer immunotherapies. In a previous work, we demonstrated the potent efficacy of the cowpea mosaic virus (CPMV), a plant virus that does not replicate in animals, applied as an in situ vaccine. CPMV is an immunostimulatory drug candidate, and intratumoral administration remodels the tumor microenvironment leading to activation of local and systemic antitumor immunity. Efficacy has been demonstrated in multiple tumor mouse models and canine cancer patients. As wild-type CPMV is infectious toward various legumes and because shedding of infectious virus from patients may be an agricultural concern, we developed UV-inactivated CPMV (termed inCPMV) which is not infectious toward plants. We report that as a monotherapy, wild-type CPMV outperforms inCPMV in mouse models of dermal melanoma or disseminated colon cancer. Efficacy of inCPMV is less than that of CPMV and similar to that of RNA-free CPMV. Immunological investigation using knockout mice shows that inCPMV does not signal through TLR7 (toll-like receptor); structure-function studies indicate that the RNA is highly cross-linked and therefore unable to activate TLR7. Wild-type CPMV signals through TLR2, -4, and -7, whereas inCPMV more closely resembles RNA-free CPMV which signals through TLR2 and -4 only. The structural features of inCPMV explain the increased potency of wild-type CPMV through the triple pronged TLR activation. Strikingly, when inCPMV is used in combination with an anti-OX40 agonist antibody (administered systemically), exceptional efficacy was demonstrated in a bilateral B16F10 dermal melanoma model. Combination therapy, with in situ vaccination applied only into the primary tumor, controlled the progression of the secondary, untreated tumors, with 10 out of 14 animals surviving for at least 100 days post tumor challenge without development of recurrence or metastatic disease. This study highlights the potential of inCPMV as an in situ vaccine candidate and demonstrates the power of combined immunotherapy approaches. Strategic immunocombination therapies are the formula for success, and the combination of in situ vaccination strategies along with therapeutic antibodies targeting the cancer immunity cycle is a particularly powerful approach.


Asunto(s)
Vacunas contra el Cáncer , Comovirus , Melanoma , Animales , Modelos Animales de Enfermedad , Perros , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Ratones , Microambiente Tumoral
4.
J Am Chem Soc ; 143(36): 14748-14765, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34490778

RESUMEN

The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qß. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qß VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.


Asunto(s)
Vacunas contra la COVID-19/metabolismo , COVID-19/epidemiología , COVID-19/prevención & control , Preparaciones de Acción Retardada/química , SARS-CoV-2/metabolismo , Vacunas de Subunidad/metabolismo , Animales , Comovirus , Simulación por Computador , Composición de Medicamentos , Epítopos/química , Calor , Humanos , Masculino , Ratones Endogámicos BALB C , Nanopartículas/química , Péptidos/química , Vacunación , Vacunas de Partículas Similares a Virus/química
5.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575893

RESUMEN

Immunotherapy holds tremendous potential in cancer therapy, in particular, when treatment regimens are combined to achieve synergy between pathways along the cancer immunity cycle. In previous works, we demonstrated that in situ vaccination with the plant virus cowpea mosaic virus (CPMV) activates and recruits innate immune cells, therefore reprogramming the immunosuppressive tumor microenvironment toward an immune-activated state, leading to potent anti-tumor immunity in tumor mouse models and canine patients. CPMV therapy also increases the expression of checkpoint regulators on effector T cells in the tumor microenvironment, such as PD-1/PD-L1, and we demonstrated that combination with immune checkpoint therapy improves therapeutic outcomes further. In the present work, we tested the hypothesis that CPMV could be combined with anti-PD-1 peptides to replace expensive antibody therapies. Specifically, we set out to test whether a multivalent display of anti-PD-1 peptides (SNTSESF) would enhance efficacy over a combination of CPMV and soluble peptide. Efficacy of the approaches were tested using a syngeneic mouse model of intraperitoneal ovarian cancer. CPMV combination with anti-PD-1 peptides (SNTSESF) resulted in increased efficacy; however, increased potency against metastatic ovarian cancer was only observed when SNTSESF was conjugated to CPMV, and not added as a free peptide. This can be explained by the differences in the in vivo fates of the nanoparticle formulation vs. the free peptide; the larger nanoparticles are expected to exhibit prolonged tumor residence and favorable intratumoral distribution. Our study provides new design principles for plant virus-based in situ vaccination strategies.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Vacunas contra el Cáncer/inmunología , Inmunoterapia , Nanopartículas , Neoplasias Ováricas/terapia , Péptidos/inmunología , Virus de Plantas , Vacunas de Partículas Similares a Virus/inmunología , Secuencia de Aminoácidos , Animales , Vacunas contra el Cáncer/administración & dosificación , Comovirus , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Péptidos/química , Vacunas de Partículas Similares a Virus/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375592

RESUMEN

Cowpea mosaic virus (CPMV) is a plant virus that has been developed for multiple biomedical and nanotechnology applications, including immunotherapy. Two key platforms are available: virus nanoparticles (VNPs) based on the complete CMPV virion, including the genomic RNA, and virus-like nanoparticles (VLPs) based on the empty CPMV (eCPMV) virion. It is unclear whether these platforms differ in terms of immunotherapeutic potential. We therefore compared their physicochemical properties and immunomodulatory activities following in situ vaccination of an aggressive ovarian tumor mouse model (ID8-Defb29/Vegf-A). In physicochemical terms, CPMV and eCPMV were very similar, and both significantly increased the survival of tumor-bearing mice and showed promising antitumor efficacy. However, they demonstrated distinct yet overlapping immunostimulatory effects due to the presence of virus RNA in wild-type particles, indicating their suitability for different immunotherapeutic strategies. Specifically, we found that the formulations had similar effects on most secreted cytokines and immune cells, but the RNA-containing CPMV particles were uniquely able to boost populations of potent antigen-presenting cells, such as tumor-infiltrating neutrophils and activated dendritic cells. Our results will facilitate the development of CPMV and eCPMV as immunotherapeutic vaccine platforms with tailored responses.IMPORTANCE The engagement of antiviral effector responses caused by viral infection is essential when using viruses or virus-like particles (VLPs) as an immunotherapeutic agent. Here, we compare the chemophysical and immunostimulatory properties of wild-type cowpea mosaic virus (CPMV) (RNA containing) and eCPMV (RNA-free VLPs) produced from two expression systems (agrobacterium-based plant expression system and baculovirus-insect cell expression). CPMV and eCPMV could each be developed as novel adjuvants to overcome immunosuppression and thus promote tumor regression in ovarian cancer (and other tumor types). To our knowledge, this is the first study to define the immunotherapeutic differences between CPMV and eCPMV, which is essential for the further development of biomedical applications for plant viruses and the selection of rational combinations of immunomodulatory reagents.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer/inmunología , Comovirus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Células Presentadoras de Antígenos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Comovirus/química , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunoterapia , Ratones , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/terapia , Tasa de Supervivencia , Vacunación , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Virión/química , Virión/inmunología
7.
BMC Biotechnol ; 15: 108, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625934

RESUMEN

BACKGROUND: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. RESULTS: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastid-targeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 µg/g recombinant protein per fresh leaf material for ER-retarded and16.2 µg/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 % inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. CONCLUSIONS: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation.


Asunto(s)
Biotecnología/métodos , Vacunas contra la Malaria/genética , Malaria/prevención & control , Proteínas de la Membrana/biosíntesis , Nicotiana/metabolismo , Plasmodium falciparum/genética , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Directa , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/genética , Conejos
8.
Biotechnol Bioeng ; 112(7): 1297-305, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25615702

RESUMEN

Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 µg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.


Asunto(s)
Antígenos de Protozoos/aislamiento & purificación , Precipitación Fraccionada , Vacunas contra la Malaria/aislamiento & purificación , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Calor , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/metabolismo , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Vacunación/métodos
9.
Virology ; 578: 7-12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434906

RESUMEN

Many plant virus-like particles (VLPs) utilized in nanotechnology are 30-nm icosahedrons. To expand the VLP platforms, we produced VLPs of Cytoplasmic type citrus leprosis virus (CiLV-C) in Nicotiana benthamiana. We were interested in CiLV-C because of its unique bacilliform shape (60-70 nm × 110-120 nm). The CiLV-C capsid protein (p29) gene was transferred to the pTRBO expression vector transiently expressed in leaves. Stable VLPs were formed, as confirmed by agarose gel electrophoresis, transmission electron microscopy and size exclusion chromatography. Interestingly, the morphology of the VLPs (15.8 ± 1.3 nm icosahedral particles) differed from that of the native bacilliform particles indicating that the assembly of native virions is influenced by other viral proteins and/or the packaged viral genome. The smaller CiLV-C VLPs will also be useful for structure-function studies to compare with the 30-nm icosahedrons of other VLPs.


Asunto(s)
Citrus , Virus ARN , Rhabdoviridae , Agricultura Molecular , Virus ARN/genética , Virión/genética
10.
Cells ; 12(18)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37759464

RESUMEN

The lack of optimal models to evaluate novel agents is delaying the development of effective immunotherapies against human breast cancer (BC). In this prospective open label study, we applied neoadjuvant intratumoral immunotherapy with empty cowpea mosaic virus-like particles (eCPMV) to 11 companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. We found that two neoadjuvant intratumoral eCPMV injections resulted in tumor reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of injected dogs. Tumor reduction was independent of clinical stage, tumor size, histopathologic grade, and tumor molecular subtype. RNA-seq-based analysis of injected tumors indicated a decrease in DNA replication activity and an increase in activated dendritic cell infiltration in the tumor microenvironment. Immunohistochemistry analysis demonstrated significant intratumoral increases in neutrophils, T and B lymphocytes, and plasma cells. eCPMV intratumoral immunotherapy demonstrated antitumor efficacy without any adverse effects. This novel immunotherapy has the potential for improving outcomes for human BC patients.


Asunto(s)
Neoplasias de la Mama , Comovirus , Humanos , Animales , Perros , Femenino , Terapia Neoadyuvante , Estudios Prospectivos , Neoplasias de la Mama/terapia , Inmunoterapia , Microambiente Tumoral
11.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36460333

RESUMEN

BACKGROUND: In situ vaccination (ISV) is a cancer immunotherapy strategy in which immunostimulatory reagents are introduced directly into a tumor to stimulate antitumor immunity both against the treated tumor and systemically against untreated tumors. Recently, we showed that cowpea mosaic virus (CPMV) is a potent multi-toll-like receptor (TLR) agonist with potent efficacy for treating tumors in mice and dogs by ISV. However, ISV with CPMV alone does not uniformly treat all mouse tumor models tested, however this can be overcome through strategic combinations. More insight is needed to delineate potency and mechanism of systemic antitumor immunity and abscopal effect. METHOD: We investigated the systemic efficacy (abscopal effect) of CPMV ISV with a two-tumor mouse model using murine tumor lines B16F10, 4T1, CT26 and MC38. Flow cytometry identified changes in cell populations responsible for systemic efficacy of CPMV. Transgenic knockout mice and depleting antibodies validated the role of relevant candidate cell populations and cytokines. We evaluated these findings and engineered a multicomponent combination therapy to specifically target the candidate cell population and investigated its systemic efficacy, acquired resistance and immunological memory in mouse models. RESULTS: ISV with CPMV induces systemic antitumor T-cell-mediated immunity that inhibits growth of untreated tumors and requires conventional type-1 dendritic cells (cDC1s). Furthermore, using multiple tumor mouse models resistant to anti-programmed death 1 (PD-1) therapy, we tested the hypothesis that CPMV along with local activation of antigen-presenting cells with agonistic anti-CD40 can synergize and strengthen antitumor efficacy. Indeed, this combination ISV strategy induces an influx of CD8+ T cells, triggers regression in both treated local and untreated distant tumors and potentiates tumor responses to anti-PD-1 therapy. Moreover, serial ISV overcomes resistance to anti-PD-1 therapy and establishes tumor-specific immunological memory. CONCLUSIONS: These findings provide new insights into in situ TLR activation and cDC1 recruitment as effective strategies to overcome resistance to immunotherapy in treated and untreated tumors.


Asunto(s)
Comovirus , Inhibidores de Puntos de Control Inmunológico , Ratones , Animales , Perros , Linfocitos T CD8-positivos , Inmunoterapia , Vacunación , Adyuvantes Inmunológicos , Células Dendríticas , Modelos Animales de Enfermedad
12.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35277459

RESUMEN

BACKGROUND: Inflammatory mammary cancer (IMC), the counterpart of human inflammatory breast cancer (IBC), is the deadliest form of canine mammary tumors. IMC patients lack specific therapy and have poor outcomes. This proof-of-principle preclinical study evaluated the efficacy, safety, and effect on survival of neoadjuvant intratumoral (in situ) empty cowpea mosaic virus (eCPMV) immunotherapy in companion dogs diagnosed with IMC. METHODS: Ten IMC-bearing dogs were enrolled in the study. Five dogs received medical therapy, and five received weekly neoadjuvant in situ eCPMV immunotherapy (0.2-0.4 mg per injection) and medical therapy after the second eCPMV injection. Efficacy was evaluated by reduction of tumor growth; safety by hematological and biochemistry changes in blood and plasma; and patient outcome by survival analysis. eCPMV-induced immune changes in blood cells were analyzed by flow cytometry; changes in the tumor microenvironment were evaluated by CD3 (T lymphocytes), CD20 (B lymphocytes), FoxP3 (Treg lymphocytes), myeloperoxidase (MPO; neutrophils), Ki-67 (proliferation index, PI; tumor cell proliferation), and Cleaved Caspase-3 (CC-3; apoptosis) immunohistochemistry. RESULTS: Two neoadjuvant in situ eCPMV injections resulted in tumor shrinkage in all patients by day 14 without systemic adverse events. Although surgery for IMC is generally not an option, reduction in tumor size allowed surgery in two IMC patients. In peripheral blood, in situ eCPMV immunotherapy was associated with a significant decrease of Treg+/CD8+ ratio and changes in CD8+Granzyme B+ T cells, which behave as a lagging predictive biomarker. In the TME, higher neutrophilic infiltration and MPO expression, lower tumor Ki-67 PI, increase in CD3+ lymphocytes, decrease in FoxP3+/CD3+ ratio (p<0.04 for all comparisons), and no changes in CC-3+ immunostainings were observed in post-treatment tumor tissues when compared with pretreatment tumor samples. eCPMV-treated IMC patients had a statistically significant (p=0.033) improved overall survival than patients treated with medical therapy. CONCLUSIONS: Neoadjuvant in situ eCPMV immunotherapy demonstrated anti-tumor efficacy and improved survival in IMC patients without systemic adverse effects. eCPMV-induced changes in immune cells point to neutrophils as a driver of immune response. Neoadjuvant in situ eCPMV immunotherapy could be a groundbreaking immunotherapy for canine IMC and a potential future immunotherapy for human IBC patients.


Asunto(s)
Comovirus , Neoplasias Inflamatorias de la Mama , Neoplasias , Animales , Perros , Factores de Transcripción Forkhead , Humanos , Antígeno Ki-67 , Terapia Neoadyuvante , Microambiente Tumoral , Vacunación
13.
Biomaterials ; 275: 120914, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34126409

RESUMEN

Cowpea mosaic virus (CPMV), a non-enveloped plant virus, and empty CPMV (eCPMV), a virus-like particle (VLP) composed of CPMV capsid without nucleic acids, are potent in situ cancer vaccines when administered intratumorally (I.T.). However, it is unclear how immune cells recognize these nanoparticles and why they are immunogenic, which was investigated in this study. CPMV generated stronger selective induction of cytokines and chemokines in naïve mouse splenocytes and exhibited more potent anti-tumor efficacy than eCPMV. MyD88 is required for both CPMV- and eCPMV-elicited immune responses. Screening with human embryonic kidney (HEK)-293 cell toll-like receptor (TLR) reporter assays along with experiments in corresponding TLR-/- mice indicated CPMV and eCPMV capsids are recognized by MyD88-dependent TLR2 and TLR4. CPMV, but not eCPMV, is additionally recognized by TLR7. Secretion of type I interferons (IFNs), which requires the interaction between TLR7 and encapsulated single-stranded RNAs (ssRNAs), is critical to CPMV's better efficacy. The same recognition mechanisms are also functional in human peripheral blood mononuclear cells (PBMCs). Overall, these findings link CPMV immunotherapy efficacy with molecular recognition, provide rationale for how to develop more potent viral particles, accentuate the value of multi-TLR agonists as in situ cancer vaccines, and highlight the functional importance of type I IFNs for in situ vaccination.


Asunto(s)
Comovirus , Animales , Células HEK293 , Humanos , Leucocitos Mononucleares , Ratones , Factor 88 de Diferenciación Mieloide , Receptores Toll-Like
14.
Mater Adv ; 2(5): 1644-1656, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34368764

RESUMEN

Cowpea mosaic virus (CPMV) is currently in the development pipeline for multiple biomedical applications, including cancer immunotherapy. In particular the application of CPMV as in situ vaccine has shown promise; here the plant viral nanoparticle is used as an adjuvant and is injected directly into a tumor to reverse immunosuppression and prime systemic anti-tumor immunity. Efficacy of this CPMV-based cancer immunotherapy has been demonstrated in multiple tumor mouse models and canine cancer patients. However, while CPMV is non-infectious to mammals, it is infectious to legumes and therefore, from a safety perspective, it is desired to develop non-infectious CPMV formulations. Non-infectious virus-like particles of CPMV devoid of nucleic acids have been produced; nevertheless, efficacy of such empty CPMV nanoparticles does not match efficacy of nucleic acid-laden CPMV. The multivalent capsid activates the innate immune system through pathogen pattern recognition receptors (PRRs) such as toll-like receptors (TLRs); the RNA cargo provides additional signaling through TLR-7/8, which boosts the efficacy of this adjuvant. Therefore, in this study, we set out to develop RNA-laden, but non-infectious CPMV. We report inactivation of CPMV using UV light and chemical inactivation using ß-propiolactone (ßPL) or formalin. 7.5 J cm-2 UV, 50 mM ßPL or 1 mM formalin was determined to be sufficient to inactivate CPMV and prevented plant infection. We compared the immunogenicity of native CPMV and inactivated CPMV formulations in vitro and in vivo using RAW-Blue™ reporter cells and a murine syngeneic, orthotropic melanoma model (using B16F10 cells and C57BL6 mice). While the in vitro assay indicated activation of the RAW-Blue™ reporter cells by formaldehyde and UV-inactivated CPMV at levels comparable to native CPMV; ßPL-inactivated CPMV appeared to have diminished activity. Tumor mouse model experiments indicate potent efficacy of the chemically-inactivated CPMV (UV-treated CPMV was not tested) leading to tumor regression and increased survival; efficacy was somewhat reduced when compared to CPMV, however these samples outperformed the empty CPMV nanoparticles. These results will facilitate the translational development of safe and potent CPMV-based cancer immunotherapies.

15.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562450

RESUMEN

Ovarian cancer is the deadliest gynecological malignancy. Though most patients enter remission following initial interventions, relapse is common and often fatal. Accordingly, there is a substantial need for ovarian cancer therapies that prevent relapse. Following remission generated by surgical debulking and chemotherapy, but prior to relapse, resected and inactivated tumor tissue could be used as a personalized vaccine antigen source. The patient's own tumor contains relevant antigens and, when combined with the appropriate adjuvant, could generate systemic antitumor immunity to prevent relapse. Here, we model this process in mice to investigate the optimal tumor preparation and vaccine adjuvant. Cowpea mosaic virus (CPMV) has shown remarkable efficacy as an immunostimulatory cancer therapy in ovarian cancer mouse models, so we use CPMV as an adjuvant in a prophylactic vaccine against a murine ovarian cancer model. Compared to its codelivery with tumor antigens prepared in three other ways, we show that CPMV co-delivered with irradiated ovarian cancer cells constitutes an effective prophylactic vaccine against a syngeneic model of ovarian cancer in C57BL/6J mice. Following two vaccinations, 72% of vaccinated mice reject tumor challenges, and all those mice survived subsequent rechallenges, demonstrating immunologic memory formation. This study supports remission-stage vaccines using irradiated patient tumor tissue as a promising option for treating ovarian cancer, and validates CPMV as an antitumor vaccine adjuvant for that purpose.

16.
ACS Infect Dis ; 7(11): 3096-3110, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34672530

RESUMEN

The development of vaccines against coronaviruses has focused on the spike (S) protein, which is required for the recognition of host-cell receptors and thus elicits neutralizing antibodies. Targeting conserved epitopes on the S protein offers the potential for pan-beta-coronavirus vaccines that could prevent future pandemics. We displayed five B-cell epitopes, originally identified in the convalescent sera from recovered severe acute respiratory syndrome (SARS) patients, on the surface of the cowpea mosaic virus (CPMV) and evaluated these formulations as vaccines. Prime-boost immunization of mice with three of these candidate vaccines, CPMV-988, CPMV-1173, and CPMV-1209, elicited high antibody titers that neutralized the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro and showed an early Th1-biased profile (2-4 weeks) transitioning to a slightly Th2-biased profile just after the second boost (6 weeks). A pentavalent slow-release implant comprising all five peptides displayed on the CPMV elicited anti-S protein and epitope-specific antibody titers, albeit at a lower magnitude compared to the soluble formulations. While the CPMV remained intact when released from the PLGA implants, processing results in loss of RNA, which acts as an adjuvant. Loss of RNA may be a reason for the lower efficacy of the implants. Finally, although the three epitopes (988, 1173, and 1209) that were found to be neutralizing the SARS-CoV were 100% identical to the SARS-CoV-2, none of the vaccine candidates neutralized the SARS-CoV-2 in vitro suggesting differences in the natural epitope perhaps caused by conformational changes or the presence of N-linked glycans. While a cross-protective vaccine candidate was not developed, a multivalent SARS vaccine was developed. The technology discussed here is a versatile vaccination platform that can be pivoted toward other diseases and applications that are not limited to infectious diseases.


Asunto(s)
COVID-19 , Comovirus , Nanopartículas , Vacunas , Animales , COVID-19/terapia , Comovirus/genética , Epítopos de Linfocito B , Humanos , Inmunización Pasiva , Ratones , Péptidos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
17.
ACS Nano ; 14(3): 2994-3003, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32133838

RESUMEN

Cancer immunotherapies are designed to facilitate recognition and elimination of transformed cells by the immune system. We have established the immunotherapeutic efficacy of the plant virus cowpea mosaic virus (CPMV) as an in situ vaccine in several syngeneic tumor mouse models as well as in companion dogs with metastatic melanoma. Intratumoral injection of CPMV modulates the local tumor microenvironment to relieve immunosuppression and potentiate antitumor immunity. The viral nucleocapsid that drives this antitumor immunity, however, also is a potent immunogen itself, and thus immune response in the form of anti-CPMV antibodies is expected during the treatment based on repeat administrations. Moreover, being part of the food chain, pre-existing antibodies to plant viruses may be prevalent. The presence of such pre-existing anti-CPMV immunity could potentially impact immunotherapeutic efficacy of the in situ vaccine and could have translational implications. To address such concerns, this study evaluated the efficacy of CPMV in situ vaccine in the presence of pre-existing antibodies in a syngeneic mouse model of ovarian cancer. Our results indicate that prior exposure to CPMV had no negative impact on the efficacy of CPMV in situ vaccine. Strikingly, an improved efficacy of CPMV in situ vaccine was observed. This study therefore presents an important milestone in the translational development of plant viral-based in situ vaccines and alleviates concerns about the presence of anti-CPMV antibodies, which are developed during the course of treatment but have no impact on immunotherapeutic efficacy.


Asunto(s)
Anticuerpos/inmunología , Vacunas contra el Cáncer/inmunología , Comovirus/inmunología , Nanopartículas/química , Neoplasias Ováricas/inmunología , Animales , Femenino , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/terapia
18.
ACS Nano ; 14(10): 12522-12537, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33034449

RESUMEN

Humanity is experiencing a catastrophic pandemic. SARS-CoV-2 has spread globally to cause significant morbidity and mortality, and there still remain unknowns about the biology and pathology of the virus. Even with testing, tracing, and social distancing, many countries are struggling to contain SARS-CoV-2. COVID-19 will only be suppressible when herd immunity develops, either because of an effective vaccine or if the population has been infected and is resistant to reinfection. There is virtually no chance of a return to pre-COVID-19 societal behavior until there is an effective vaccine. Concerted efforts by physicians, academic laboratories, and companies around the world have improved detection and treatment and made promising early steps, developing many vaccine candidates at a pace that has been unmatched for prior diseases. As of August 11, 2020, 28 of these companies have advanced into clinical trials with Moderna, CanSino, the University of Oxford, BioNTech, Sinovac, Sinopharm, Anhui Zhifei Longcom, Inovio, Novavax, Vaxine, Zydus Cadila, Institute of Medical Biology, and the Gamaleya Research Institute having moved beyond their initial safety and immunogenicity studies. This review analyzes these frontrunners in the vaccine development space and delves into their posted results while highlighting the role of the nanotechnologies applied by all the vaccine developers.


Asunto(s)
Ensayos Clínicos como Asunto , Industria Farmacéutica/métodos , Nanotecnología/métodos , Vacunas Virales/inmunología , Vacunas contra la COVID-19 , Infecciones por Coronavirus/economía , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Humanos , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/economía
19.
Annu Rev Virol ; 7(1): 559-587, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32991265

RESUMEN

Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.


Asunto(s)
Bacteriófagos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Indicadores y Reactivos , Nanotecnología/métodos , Virus de Plantas/metabolismo , Terapia Genética/métodos , Humanos , Inmunoterapia/métodos , Nanopartículas/administración & dosificación , Nanopartículas/uso terapéutico
20.
Front Oncol ; 10: 594614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392089

RESUMEN

INTRODUCTION: Virus and virus-like nanoparticles (VNPs) have been used for a variety of preclinical treatments, including in situ anti-cancer vaccination. The Cowpea mosaic virus (CPMV) is a VNP that has shown the ability to stimulate an anti-cancer immune response. The hypothesis of this study is two-fold: that intratumoral CPMV enhances the immunogenetic and cytotoxic response of hypofractionated radiation (15 Gy or 3 x 8 Gy), and that the effect differs between fraction regimens in the murine B16 flank melanoma model. METHODS: CPMV nanoparticles were delivered intratumorally, 100 µg/tumor to B16 murine melanoma flank tumors alone, and in combination with either 15 Gy or 3 x 8 Gy (3 consecutive days). Tumors were assessed for immune and cytotoxic gene and protein expression, and cytotoxic T cell infiltration 4 days post treatment. Treatment based tumor control was assessed by a 3-fold tumor growth assay. RESULTS: Both CPMV and radiation alone demonstrated the activation of a number of important immune and cytotoxic genes including natural killer cell and T cell mediated cytotoxicity pathways. However, the combination treatment activated greater expression than either treatment alone. CPMV combined with a single dose of 15 Gy demonstrated greater immune and cytotoxic gene expression, protein expression, CD8+ T cell infiltration activity, and greater tumor growth delay compared to 3 x 8 Gy with CPMV. CONCLUSION: CPMV presents a unique and promising hypofractionated radiation adjuvant that leads to increased anti-tumor cytotoxic and immune signaling, especially with respect to the immune mediated cytotoxicity, immune signaling, and toll-like receptor signaling pathways. This improvement was greater with a single dose than with a fractionated dose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA