Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832750

RESUMEN

Dimerized quantum magnets are exotic crystalline materials where Bose-Einstein condensation of magnetic excitations can happen. However, known dimerized quantum magnets are limited to only a few oxides and halides. Here, we unveil 9 dimerized quantum magnets and 11 conventional antiferromagnets in ternary metal borides MTB4 (M = Sc, Y, La, Ce, Lu, Mg, Ca, and Al; T = V, Cr, Mn, Fe, Co, and Ni), where T atoms are arranged in structural dimers. Quantum magnetism in these compounds is dominated by strong antiferromagnetic (AFM) interactions between Cr (Cr and Mn for M = Mg and Ca) atoms within the dimers, with much weaker interactions between the dimers. These systems are proposed to be close to a quantum critical point between a disordered singlet spin-dimer phase, with a spin gap, and the ordered conventional Néel AFM phase. They greatly enrich the materials inventory that allows investigations of the spin-gap phase. Conventional antiferromagnetism in these compounds is dominated by ferromagnetic Mn (Fe for M = Mg and Ca) interactions within the dimers. The predicted stable and nonmagnetic (NM) YFeB4 phase is synthesized and characterized, providing a scarce candidate to study Fe dimers and Fe ladders in borides. The identified quantum, conventional, and NM systems provide a platform with abundant possibilities to tune the magnetic exchange coupling by doping and study the unconventional quantum phase transition and conventional magnetic transitions. This work opens new avenues for studying novel magnetism in borides arising from spin dimers and establishes a theoretical workflow for future searches for dimerized quantum magnets in other families of materials.

2.
Nat Commun ; 14(1): 5371, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666843

RESUMEN

Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors.

3.
Nat Mater ; 9(7): 579-85, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20562879

RESUMEN

Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

4.
Phys Rev Lett ; 106(8): 087202, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21405596

RESUMEN

We report the direct observation of surface magnetization domains of the magnetoelectric Cr(2)O(3) using photoemission electron microscopy with magnetic circular dichroism contrast and magnetic force microscopy. The domain pattern is strongly affected by the applied electric field conditions. Zero-field cooling results in an equal representation of the two domain types, while electric-field cooling selects one dominant domain type. These observations confirm the existence of surface magnetization, required by symmetry in magnetoelectric antiferromagnets.

5.
J Phys Condens Matter ; 27(2): 022203, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25500630

RESUMEN

Ways to increase the Néel temperature TN in the magnetoelectric Fe2TeO6 antiferromagnet are explored with the help of first-principles calculations. Substitution of larger ions like Zr or Hf for tellurium increases the superexchange angles. The compensating O vacancies tend to form bound complexes with Zr dopants, which do not degrade the electronic band gap. TN is estimated to increase by 15% at 12.5% Te â†’ Zr substitution with such compensation. Substitution of N for O is favorable due to the decreased charge-transfer gap. The overall effect for N(3-) substitution compensated by O vacancies is estimated at 3-4% TN enhancement per 1% O â†’ N substitution. A 1% compressive (0 0 1) epitaxial strain enhances TN by about 6%.

6.
Phys Rev Lett ; 98(4): 046601, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17358794

RESUMEN

Fully relativistic first-principles calculations of the Fe(001) surface demonstrate that resonant surface (interface) states may produce sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single magnetic electrode. The effect is driven by the spin-orbit coupling. It shifts the resonant surface band via the Rashba effect when the magnetization direction changes. We find that spin-flip scattering at the interface is controlled not only by the strength of the spin-orbit coupling, but depends strongly on the intrinsic width of the resonant surface states.

7.
Phys Rev Lett ; 99(19): 196603, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-18233099

RESUMEN

A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with the voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin-density approximation, we calculate the spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of the applied bias voltage. We find a change in sign of the spin polarization of tunneling electrons with bias voltage due to the interface minority-spin resonance. This result explains recent experimental data on spin injection in Fe/GaAs contacts and on tunneling magnetoresistance in Fe/GaAs/Fe magnetic tunnel junctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA