Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 25(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936688

RESUMEN

Bioaffinity capturing of molecules allows the discovery of bioactive compounds and decreases the need for various stages in the natural compound isolation process. Despite the high selectivity of this technique, the screening and identification methodology depends on the presence of a protein to capture potential ligands. However, some proteins, such as snake secretory phospholipase A2 (sPLA2), have never been investigated using this approach. The purpose of this study was to evaluate the use of a new method for screening natural compounds using a bioaffinity-guided ultrafiltration method on Crotalus durissus terrificus sPLA2 followed by HPLC-MS to identify the compounds, and this method could be used to discover new anti-inflammatory compounds from the various organisms originating from biodiversity. Different extracts were selected to evaluate their ability to inhibit sPLA2 activity. The extracts were incubated with sPLA2 and the resulting mixture was ultrafiltrated to elute unbound components. The resulting compounds were identified by HPLC-MS. We identified hispidulin as one of the components present in the Moquiniastrum floribundum leaf and evaluated the ability of this isolated compound to neutralize the inflammatory activity of sPLA2 from Crotalus durissus terrificus.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Fosfolipasas A2 Secretoras/antagonistas & inhibidores , Animales , Productos Biológicos/química , Productos Biológicos/farmacología , Cromatografía Líquida de Alta Presión , Crotalus/genética , Inhibidores Enzimáticos/química , Ligandos , Fosfolipasas A2 Secretoras/química
2.
Int J Mol Sci ; 18(9)2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28906474

RESUMEN

Compound 8-C-rhamnosyl apigenin (8CR) induced a moderate reduction in the enzymatic activity of secretory phospholipase A2 (sPLA2) from Crotalus durissus terrificus and cytosolic phospholipase A2 (cPLA2), but the compound also significantly inhibited the enzymatic activity of the enzyme cyclooxygenase. In vitro assays showed that the compound induced a slight change in the secondary structure of sPLA2 from Crotalus durissus terrificus snake venom. In vivo assays were divided into two steps. In the first step, the 8CR compound was administered by intraperitoneal injections 30 min prior to administration of sPLA2. In this condition, 8CR inhibited edema and myonecrosis induced by the sPLA2 activity of Crotalus durissus terrificus in a dose-dependent manner by decreasing interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and lipid peroxidation. This has been demonstrated by monitoring the levels of malondialdehyde (MDA) in rat paws after the course of edema induced by sPLA2. These results, for the first time, show that sPLA2 of Crotalus durissus terrificus venom induces massive muscle damage, as well as significant edema by mobilization of cyclooxygenase enzymes. Additionally, its pharmacological activity involves increased lipid peroxidation as well as TNF-α and IL-1ß production. Previous administration by the peritoneal route has shown that dose-dependent 8CR significantly decreases the enzymatic activity of cyclooxygenase enzymes. This resulted in a decrease of the amount of bioactive lipids involved in inflammation; it also promoted a significant cellular protection against lipid peroxidation. In vivo experiments performed with 8CR at a concentration adjusted to 200 µg (8 mg/kg) of intraperitoneal injection 15 min after sPLA2 injection significantly reduced sPLA2 edema and the myotoxic effect induced by sPLA2 through the decrease in the enzymatic activity of cPLA2, cyclooxygenase, and a massive reduction of lipid peroxidation. These results clearly show that 8CR is a potent anti-inflammatory that inhibits cyclooxygenase-2 (COX-2), and it may modulate the enzymatic activity of sPLA2 and cPLA2. In addition, it was shown that Crotalus durissus terrificus sPLA2 increases cell oxidative stress during edema and myonecrosis, and the antioxidant properties of the polyphenolic compound may be significant in mitigating the pharmacological effect induced by sPLA2 and other snake venom toxins.


Asunto(s)
Apigenina/farmacología , Edema/tratamiento farmacológico , Peperomia/química , Extractos Vegetales/farmacología , Enfermedad Aguda , Animales , Apigenina/química , Biomarcadores , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Edema/etiología , Edema/metabolismo , Edema/patología , Mediadores de Inflamación/metabolismo , Estructura Molecular , Fosfolipasas A2 Secretoras/metabolismo , Extractos Vegetales/química , Ratas
3.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111388

RESUMEN

Snake venom serine protease (SVSP) interferes with the regulation and control of important biological reactions in homeostasis and can be classified as an activator of the fibrinolytic system and platelet aggregation. Our group has recently isolated a new serine protease from Crotalus durissus terrificus total venom (Cdtsp-2). This protein exhibits edematogenic capacity and myotoxic activity. A Kunitz-like EcTI inhibitor protein with a molecular mass of 20 kDa was isolated from Enterolobium contortisiliquum and showed high trypsin inhibition. Thus, the objective of this work is to verify the possible inhibition of the pharmacological activities of Cdtsp-2 by the Kutinz-type inhibitor EcTI. To isolate Cdtsp-2 from total C. d. terrificus venom, we used three-step chromatographic HPLC. Using the mice paw edema model, we observed an edematogenic effect, myotoxicity and hepatotoxicity caused by Cdtsp-2. In vitro and in vivo experiments showed that the alterations in hemostasis caused by Cdtsp-2 are crucial for the development of marked hepatotoxicity and that EcTI significantly inhibits the enzymatic and pharmacological activities of Cdtsp-2. Kunitz-like inhibitor may be a viable alternative for the development of ancillary treatments against the biological activities of venoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA