RESUMEN
Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings.
Asunto(s)
Arginasa/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Transducción de Señal/inmunología , Animales , Arginasa/metabolismo , Arginina/inmunología , Arginina/metabolismo , Western Blotting , Células Dendríticas/metabolismo , Femenino , Perfilación de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma , Triptófano/inmunología , Triptófano/metabolismoRESUMEN
l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.
Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Biocatálisis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Noqueados , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptófano/metabolismoRESUMEN
Indoleamine 2,3-dioxygenase 2 (IDO2) is a paralog of Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan-degrading enzyme producing immunomodulatory molecules. However, the two proteins are unlikely to carry out the same functions. IDO2 shows little or no tryptophan catabolic activity and exerts contrasting immunomodulatory roles in a context-dependent manner in cancer and autoimmune diseases. The recently described potential non-enzymatic activity of IDO2 has suggested its possible involvement in alternative pathways, resulting in either pro- or anti-inflammatory effects in different models. In a previous study on non-small cell lung cancer (NSCLC) tissues, we found that IDO2 expression revealed at the plasma membrane level of tumor cells was significantly associated with poor prognosis. In this study, the A549 human cell line, basally expressing IDO2, was used as an in vitro model of human lung adenocarcinoma to gain more insights into a possible alternative function of IDO2 different from the catalytic one. In these cells, immunocytochemistry and isopycnic sucrose gradient analyses confirmed the IDO2 protein localization in the cell membrane compartment, and the immunoprecipitation of tyrosine-phosphorylated proteins revealed that kinase activities can target IDO2. The different localization from the cytosolic one and the phosphorylation state are the first indications for the signaling function of IDO2, suggesting that the IDO2 non-enzymatic role in cancer cells is worthy of deeper understanding.
Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Fosforilación , Triptófano/metabolismoRESUMEN
The immunosuppressive tumor microenvironment (TME) in glioblastoma (GBM) is mainly driven by tumor-associated macrophages (TAMs). We explored whether their sustained iron metabolism and immunosuppressive activity were correlated, and whether blocking the central enzyme of the heme catabolism pathway, heme oxygenase-1 (HO-1), could reverse their tolerogenic activity. To this end, we investigated iron metabolism in bone marrow-derived macrophages (BMDMs) isolated from GBM specimens and in in vitro-derived macrophages (Mφ) from healthy donor (HD) blood monocytes. We found that HO-1 inhibition abrogated the immunosuppressive activity of both BMDMs and Mφ, and that immunosuppression requires both cell-to-cell contact and soluble factors, as HO-1 inhibition abolished IL-10 release, and significantly reduced STAT3 activation as well as PD-L1 expression. Interestingly, not only did HO-1 inhibition downregulate IDO1 and ARG-2 gene expression, but also reduced IDO1 enzymatic activity. Moreover, T cell activation status affected PD-L1 expression and IDO1 activity, which were upregulated in the presence of activated, but not resting, T cells. Our results highlight the crucial role of HO-1 in the immunosuppressive activity of macrophages in the GBM TME and demonstrate the feasibility of reprogramming them as an alternative therapeutic strategy for restoring immune surveillance.
Asunto(s)
Glioblastoma , Hemo-Oxigenasa 1 , Macrófagos Asociados a Tumores , Humanos , Antígeno B7-H1/metabolismo , Glioblastoma/patología , Hemo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Terapia de Inmunosupresión , Interleucina-10 , Hierro , Microambiente TumoralRESUMEN
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) degrade tryptophan (Trp) into kynurenine (Kyn) at the initial step of an enzymatic pathway affecting T cell proliferation. IDO1 is highly expressed in various cancer types and associated with poor prognosis. Nevertheless, the serum Kyn/Trp concentration ratio has been suggested as a marker of cancer-associated immune suppression. We measured Kyn and Trp in blood samples of a wide cohort of non-small-cell lung cancer (NSCLC) patients, before they underwent surgery, and analyzed possible correlations of the Kyn/Trp ratio with either IDO1 expression or clinical-pathological parameters. Low Kyn/Trp significantly correlated with low IDO1 expression and never-smoker patients; while high Kyn/Trp was significantly associated with older (≥68 years) patients, advanced tumor stage, and squamous cell carcinoma (Sqcc), rather than the adenocarcinoma (Adc) histotype. Moreover, high Kyn/Trp was associated, among the Adc group, with higher tumor stages (II and III), and, among the Sqcc group, with a high density of tumor-infiltrating lymphocytes. A trend correlating the high Kyn/Trp ratio with the probability of recurrences from NSCLC was also found. In conclusion, high serum Kyn/Trp ratio, associated with clinical and histopathological parameters, may serve as a serum biomarker to optimize risk stratification and therapy of NSCLC patients.
Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Quinurenina/sangre , Neoplasias Pulmonares/patología , Triptófano/sangre , Adenocarcinoma del Pulmón/sangre , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Células Escamosas/sangre , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/cirugía , Femenino , Estudios de Seguimiento , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/cirugía , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Pronóstico , Tasa de SupervivenciaRESUMEN
The cytokine interleukin IL-35 is known to exert strong immunosuppressive functions. Indoleamine 2,3-dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL-35 and the activity of those enzymes. We transfected a single chain IL-35Ig gene construct in murine splenic DCs (DC35 ) and assessed any IDO1 and Arg1 activities as resulting from ectopic IL-35Ig expression, both in vitro and in vivo. Unlike Ido1, Arg1 expression was induced in vitro in DC35 , and it conferred an immunosuppressive phenotype on those cells, as revealed by a delayed-type hypersensitivity assay. Moreover, the in vivo onset of a tolerogenic phenotype in DC35 was associated with the detection of CD25+ CD39+ , rather than Foxp3+ , regulatory T cells. Therefore, Arg1, but not Ido1, expression in DC35 appears to be an early event in IL-35Ig-mediated immunosuppression.
Asunto(s)
Arginasa/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica/inmunología , Interleucinas/inmunología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Apirasa/inmunología , Apirasa/metabolismo , Arginasa/genética , Arginasa/metabolismo , Células Dendríticas/metabolismo , Femenino , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Tolerancia Inmunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-4/genética , Interleucina-4/inmunología , Interleucina-4/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Dendritic cells (DCs) are professional antigen presenting cells capable of orchestrating either stimulatory or regulatory immune responses mediated by T cells. Interleukin 35 (IL-35) is an immunosuppressive, heterodimeric cytokine belonging to the IL-12 family and known to be produced by regulatory T cells but not DCs. In this study, we explored the possible immunosuppressive effect of IL-35 ectopically expressed by splenic DCs from nonobese diabetic (NOD) mice, a prototypical model of autoimmune diabetes. After pulsing with the IGRP peptide (a dominant, diabetogenic autoantigen in NOD mice) and transfer in vivo, IL-35Ig- but not Ig-transfected DCs suppressed antigen specific, T cell-mediated responses in a skin test assay. More importantly, transfer of IL-35Ig-transfected, IGRP-pulsed DCs into prediabetic NOD mice induced a delayed and less severe form of diabetes, an effect accompanied by the increase of CD4(+)CD39(+) suppressive T cells in pancreatic lymph nodes. Our data therefore suggest that DCs overexpressing ectopic IL-35Ig might represent a powerful tool in negative vaccination strategies.
Asunto(s)
Anticuerpos/genética , Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Interleucinas/genética , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Células Dendríticas/metabolismo , Células Dendríticas/trasplante , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Femenino , Terapia Genética/métodos , Células HEK293 , Humanos , Interleucinas/biosíntesis , Interleucinas/inmunología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Datos de Secuencia Molecular , Páncreas/citología , Páncreas/inmunología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/inmunologíaRESUMEN
Indoleamine 2,3-dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal-transducing molecule, independently of its enzymic function. IDO1 signalling activity is triggered in plasmacytoid dendritic cells (pDCs) by transforming growth factor-ß (TGF-ß), an event that requires the non-canonical NF-κB pathway and induces long-lasting IDO1 expression and autocrine TGF-ß production in a positive feedback loop, thus sustaining a stably regulatory phenotype in pDCs. IDO1 expression and catalytic function are defective in pDCs from non-obese diabetic (NOD) mice, a prototypic model of autoimmune diabetes. In the present study, we found that TGF-ß failed to activate IDO1 signalling function as well as up-regulate IDO1 expression in NOD pDCs. Moreover, TGF-ß-treated pDCs failed to exert immunosuppressive properties in vivo. Nevertheless, transfection of NOD pDCs with Ido1 prior to TGF-ß treatment resulted in activation of the Ido1 promoter and induction of non-canonical NF-κB and TGF-ß, as well as decreased production of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α). Overexpression of IDO1 in TGF-ß-treated NOD pDCs also resulted in pDC ability to suppress the in vivo presentation of a pancreatic ß-cell auto-antigen. Thus, our data suggest that a correction of IDO1 expression may restore its dual function and thus represent a proper therapeutic manoeuvre in this autoimmune setting.
Asunto(s)
Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Inmunidad Celular/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Piel/inmunología , Linfocitos T Reguladores/inmunología , Animales , Western Blotting , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Piel/citología , Piel/metabolismoRESUMEN
The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.
Asunto(s)
Neoplasias Ováricas , Oximas , Triptófano , Femenino , Humanos , Animales , Ratones , Triptófano/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Quinurenina/metabolismo , Sulfonamidas , Inhibidores Enzimáticos/farmacología , Carcinogénesis , Microambiente TumoralRESUMEN
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV-1-derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases.
Asunto(s)
Arginasa , Células Dendríticas , VIH-1 , Arginasa/metabolismo , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tolerancia Inmunológica , Oligonucleótidos , ARN Viral/genética , ARN Viral/metabolismoRESUMEN
Age-associated osteosarcopenia is an unresolved syndrome characterized by the concomitant loss of bone (osteopenia) and skeletal muscle (sarcopenia) tissues increasing falls, immobility, morbidity, and mortality. Unbalanced resorption of bone in the remodeling process and excessive protein breakdown, especially fast type II myosin heavy chain (MyHC-II) isoform and myofiber metabolic shift, are the leading causes of bone and muscle deterioration in the elderly, respectively. Equisetum arvense (EQ) is a plant traditionally recommended for many pathological conditions due to its anti-inflammatory properties. Thus, considering that a chronic low-grade inflammatory state predisposes to both osteoporosis and sarcopenia, we tested a standardized hydroalcoholic extract of EQ in in vitro models of muscle atrophy [C2C12 myotubes treated with proinflammatory cytokines (TNFα/IFNγ), excess glucocorticoids (dexamethasone), or the osteokine, receptor activator of nuclear factor kappa-B ligand (RANKL)] and osteoclastogenesis (RAW 264.7 cells treated with RANKL). We found that EQ counteracted myotube atrophy, blunting the activity of several pathways depending on the applied stimulus, and reduced osteoclast formation and activity. By in silico target fishing, IKKB-dependent nuclear factor kappa-B (NF-κB) inhibition emerges as a potential common mechanism underlying EQ's anti-atrophic effects. Consumption of EQ (500â¯mg/kg/day) by pre-geriatric C57BL/6 mice for 3 months translated into: i) maintenance of muscle mass and performance; ii) restrained myofiber oxidative shift; iii) slowed down age-related modifications in osteoporotic bone, significantly preserving trabecular connectivity density; iv) reduced muscle- and spleen-related inflammation. EQ can preserve muscle functionality and bone remodeling during aging, potentially valuable as a natural treatment for osteosarcopenia.
Asunto(s)
Equisetum , Extractos Vegetales , Sarcopenia , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratones , Sarcopenia/tratamiento farmacológico , Sarcopenia/patología , Células RAW 264.7 , Equisetum/química , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Ligando RANK/metabolismo , FN-kappa B/metabolismo , Osteogénesis/efectos de los fármacos , Antiinflamatorios/farmacologíaRESUMEN
The interleukin 12 (IL-12) family comprises a group of heterodimeric cytokines that can cope with a great variety of immune conditions as the microenvironment demands. By sharing cytokine and receptor subunits, IL-12 (comprised of p40/p35 subunits), IL-23 (p40/p19), IL-27 (p28/EBI3), and IL-35 (p35/EBI3) represent, as a whole, a highly versatile system participating in controlling the continuum from inflammation to tolerance. Promiscuity, a peculiar feature of those cytokines, is a powerful and economic means of producing individual factors with distinct activities via different combinations of a single set of subunits. Whereas IL-12 and IL-23 have a clearly dominant immunostimulatory functional profile and IL-35 is a potent immunosuppressive agent, IL-27 can exert both adjuvant and regulatory effects, depending on the cytokine milieu. Promiscuity itself, however, may significantly hamper the therapeutic use of heterodimeric cytokines. The subunits of a recombinant cytokine, when administered in its native form, will rapidly dissociate in vivo and reassociate with alternative partners, thus generating different heterodimeric or even homodimeric molecules (i.e., p40/p40) with unwanted effects. As in other areas, bioengineering has provided a formidable tool to overcome the constraints associated with the potential use of IL-12 family cytokines. The generation of several gene constructs expressing IL-12, IL-23, IL-27, IL-35, or even the homodimer p40/p40, in their monomerized, single-chain form has allowed us to unveil the efficacy of those molecules in several experimental settings, including neoplasia, viral infection, chronic inflammation, allergy and autoimmunity. Although work is still needed to obtain an overall picture of therapeutic vs. adverse effects of individual molecules before any use in humans, the new frontiers of bioengineering are now driving the production of completely new combinations of cytokine subunits that may further extend the potential clinical use of such eclectic proteins.
Asunto(s)
Bioingeniería , Citocinas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Secuencia de Aminoácidos , Citocinas/química , Citocinas/uso terapéutico , Dimerización , Humanos , Interleucina-12/química , Interleucina-12/genética , Interleucina-23/química , Interleucina-23/genética , Interleucina-23/uso terapéutico , Interleucina-27/química , Interleucina-27/genética , Interleucina-27/uso terapéutico , Interleucinas/química , Interleucinas/genética , Interleucinas/uso terapéutico , Proteínas Recombinantes de Fusión/químicaRESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan metabolizing enzyme chronically activated in many cancer patients and its expression and activity correlate with a poor prognosis. In fact, it acts as an immune regulator and contributes to tumor-induced immunosuppression by determining tryptophan deprivation and producing immunosuppressive metabolites named kynurenines. These findings made IDO1 an attractive target for cancer immunotherapy and small-molecule inhibitors, such as epacadostat, have been developed to block its enzymatic activity. Although epacadostat was effective in preclinical models and in early phase trials, it gave negative results in a metastatic melanoma randomized phase III study to test the benefit of adding epacadostat to the reference pembrolizumab therapy. However, the reason for the epacadostat failure in this clinical trial has never been understood. Our data suggest that a possible explanation of epacadostat ineffectiveness may rely on the ability of this drug to enhance the other IDO1 immunoregulatory mechanism, involving intracellular signaling function. These findings open up a new perspective for IDO1 inhibitors developed as new anticancer drugs, which should be carefully evaluated for their ability to block not only the catalytic but also the signaling activity of IDO1.
Asunto(s)
Melanoma , Triptófano , Humanos , Triptófano/metabolismo , Quinurenina/metabolismo , Oximas/farmacologíaRESUMEN
The dried stigmas of Crocus sativus L. (Iridaceae) are traditionally processed to produce saffron, a spice widely used as a food coloring and flavoring agent, which is important in the pharmaceutical and textile dye-producing industries. The labor-intensive by-hand harvesting and the use of only a small amount of each flower cause saffron to be the most expensive spice in the world. Crocus sp. petals are by-products of saffron production and represent an interesting raw material for the preparation of extracts intended for health protection in the perspective of a circular economy. In the present study, ethanolic extract from Crocus sativus L. petals (Crocus sativus L. petal extract, CsPE) was tested on macrophages by in vitro models of inflammation and osteoclastogenesis. The extract was found to be endowed with anti-inflammatory activity, significantly reducing the nitric oxide production and IL-6 release by RAW 264.7 murine cells. Moreover, CsPE demonstrated an anti-osteoclastogenic effect, as revealed by a complete inhibition of tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation and a decreased expression of key osteoclast-related genes. This study, which focuses on the macrophage as the target cell of the bioactive extract from Crocus sativus L. petals, suggests that the petal by-product of saffron processing can usefully be part of a circular economy network aimed at producing an extract that potentially prevents bone disruption.
RESUMEN
The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.
Asunto(s)
Productos Biológicos , Resorción Ósea , Suplementos Dietéticos , Osteogénesis , Animales , Productos Biológicos/farmacología , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular , Humanos , Ratones , Osteoblastos/metabolismo , Osteoclastos , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Células RAW 264.7 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
OBJECTIVES: ⢠To evaluate the antitumour effects of IL-23 gene transfer into mouse bladder carcinoma (MBT2) cells. ⢠To investigate the mechanisms underlying the subsequent constitutive secrection of IL-23 by the MBT2 cells MATERIALS AND METHODS: ⢠An expression vector containing IL-23 gene was introduced into MBT2 cells by liposome-mediated gene transfer, and secretion of IL-23 was confirmed by ELISA. ⢠The in vivo antitumour effect of IL-23-secreting MBT2 cells (MBT2/IL-23) was examined by injecting the cells into syngeneic C3H mice. ⢠A tumour vaccination study using mitomycin C (MMC)-treated IL-23-secreting MBT2 cells was carried out, and the usefulness of in vivo CD25 depletion for an additional vaccine effect was also investigated. ⢠The mechanisms underlying the antitumour effects were investigated by antibody depletion of CD8 or CD4 T cells, or natural killer cells, and cells infiltrating the tumour sites in vivo were assessed using immunohistochemistry. RESULTS: ⢠Stable transformants transduced with MBT2/IL-23 secreted IL-23 into the culture supernatant. ⢠Genetically engineered IL-23-secreting MBT2 cells were rejected in syngeneic mice. ⢠MBT2/IL-23-vaccinated mice inhibited the tumour growth of parental MBT2 cells injected at a distant site and this vaccine effect was enhanced by combination with in vivo CD25 depletion by an antibody. ⢠The main effector cells for the direct antitumour effect of MBT2/IL-23 were CD8 T cells, which was shown by in vivo depletion and immunohistochemical study. CONCLUSIONS: ⢠IL-23-secreting MBT2 cells were rejected in syngeneic mice by the activation of CD8 T cells. ⢠MMC-treated MBT2/IL-23 can have a tumour vaccine effect for parental MBT2 cells, and this effect was enhanced by combination with in vivo CD25 depletion.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Terapia Genética/métodos , Interleucina-23/genética , Neoplasias de la Vejiga Urinaria/terapia , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Técnicas de Transferencia de Gen , Rechazo de Injerto/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Interleucina-23/biosíntesis , Interleucina-23/metabolismo , Ganglios Linfáticos/inmunología , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C3H , Trasplante de Neoplasias , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Obesity is a metabolic disease characterized by a state of chronic, low-grade inflammation and dominated by pro-inflammatory cytokines such as IL-6. Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that catalyzes the first step in the kynurenine pathway by transforming l-tryptophan (Trp) into l-kynurenine (Kyn), a metabolite endowed with anti-inflammatory and immunoregulatory effects. In dendritic cells, IL-6 induces IDO1 proteasomal degradation and shuts down IDO1-mediated immunosuppressive effects. In tumor cells, IL-6 upregulates IDO1 expression and favors tumor immune escape mechanisms. To investigate the role of IDO1 and its possible relationship with IL-6 in obesity, we induced the disease by feeding mice with a high fat diet (HFD). Mice on a standard diet were used as control. Experimental obesity was associated with high IDO1 expression and Kyn levels in the stromal vascular fraction of visceral white adipose tissue (SVF WAT). IDO1-deficient mice on HFD gained less weight and were less insulin resistant as compared to wild type counterparts. Administration of tocilizumab (TCZ), an IL-6 receptor (IL-6R) antagonist, to mice on HFD significantly reduced weight gain, controlled adipose tissue hypertrophy, increased insulin sensitivity, and induced a better glucose tolerance. TCZ also induced a dramatic inhibition of IDO1 expression and Kyn production in the SVF WAT. Thus our data indicated that the IL-6/IDO1 axis may play a pathogenetic role in a chronic, low-grade inflammation condition, and, perhaps most importantly, IL-6R blockade may be considered a valid option for obesity treatment.
Asunto(s)
Susceptibilidad a Enfermedades , Metabolismo Energético , Interleucina-6/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Triptófano/metabolismo , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Insulina/metabolismo , Quinurenina/metabolismo , Masculino , Ratones , Obesidad/patología , Receptores de Interleucina-6/metabolismoRESUMEN
Immune checkpoint inhibitors have revolutionized the clinical approach of untreatable tumors and brought a breath of fresh air in cancer immunotherapy. However, the therapeutic effects of these drugs only cover a minority of patients and alternative immunotherapeutic targets are required. Metabolism of l-tryptophan (Trp) via the kynurenine pathway represents an important immune checkpoint mechanism that controls adaptive immunity and dampens exaggerated inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the enzyme catalyzing the first, rate-limiting step of the pathway, is expressed in several human tumors and IDO1 catalytic inhibitors have reached phase III clinical trials, unfortunately with disappointing results. Although much less studied, the IDO1 paralog IDO2 may represent a valid alternative as drug target in cancer immunotherapy. Accumulating evidence indicates that IDO2 is much less effective than IDO1 in metabolizing Trp and its functions are rather the consequence of interaction with other, still undefined proteins that may vary in distinct inflammatory and neoplastic contexts. As a matter of fact, the expression of IDO2 gene variants is protective in PDAC but increases the risk of developing tumor in NSCLC patients. Therefore, the definition of the IDO2 interactome and function in distinct neoplasia may open innovative avenues of therapeutic interventions.
Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor , Inhibidores Enzimáticos/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Autoinmunidad , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/etiología , Neoplasias/patología , Resultado del TratamientoRESUMEN
Programmed death ligand 1 (PD-L1) expression is a predictive biomarker of the success of PD-1/PD-L1 inhibitor therapy for patients with advanced non-small cell lung cancer (NSCLC) but its role as a prognostic marker for early-stage resectable NSCLC remains unclear. We studied gene expression levels of immune-related genes PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ in tumor tissue of surgically resected NSCLC and correlated the finding with clinicopathological features and patient outcomes. A total of 191 consecutive early-stage NSCLC patients who underwent curative pulmonary resection were studied. The mRNA expression levels of immune-related genes were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using RT2 Profiler PCR Arrays (Qiagen). PD-1, PD-L2 and IDO-2 gene expression levels were significantly higher in patients with squamous histology (p = 0.001, p = 0.021 and p < 0.001; respectively). PD-1, PD-L1 and IDO-2 gene expression levels were significantly higher in patients with higher stage (p = 0.005, p = 0.048 and p = 0.002, respectively). The univariate analysis for recurrence-free survival (RFS) and overall survival (OS) showed that patients with higher levels of three-genes (PD-L1/PD-L2/INFγ) (hazard ratio (HR)) 1.90 (95% confidence interval (CI), 1.13-3.21), p = 0.015) were associated with a worse RFS, while patients with higher levels of both genes (PD-L1/IDO-2) or (PD-L2/IDO-1) were associated with a worse OS (HR 1.63 95% CI, 1.06-2.51, p = 0.024; HR 1.54 95% CI, 1.02-2.33, p = 0.04; respectively). The multivariate interaction model adjusted for histology and stage confirmed that higher levels of three genes (PD-L1/PD-L2/INFγ) were significantly associated with worse RFS (HR 1.98, p = 0.031) and higher levels of both genes (PD-L1/IDO-2) and (PD-L2/IDO-1) with worse OS (HR 1.98, p = 0.042, HR 1.92, p = 0.022). PD-L1/IDO-2 and PD-L2/IDO-1 co-expression high levels are independent negative prognostic factors for survival in early NSCLC. These features may have important implications for future immune-checkpoint therapeutic approaches.
Asunto(s)
Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Tocilizumab has been proposed as a means of opposing hyperinflammatory responses in intensive care patients with COVID-19. Here, we briefly discuss the potentially multiple, synergistic mechanisms whereby tocilizumab might exert therapeutic activity, mostly focusing on the production of tryptophan-derived catabolites that would result from blockade of IL-6 signaling, as contextualized to the cytokine storm occurring in COVID-19 patients.