Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 93(suppl 4): e20210457, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34852065

RESUMEN

Syzygium malaccense is popularly used to treat inflammation and pain-related ailments. The species was assessed regarding its antioxidant, antiglycant, anti-inflammatory, including anti-neuroinflammatory, and antinociceptive activities. Different models were employed to measure S. malaccense extract (ESM) antioxidant activity. The antiglycant activity was determined using the glucose-induced protein glycation model. LPS-induced neuroinflammation on murine BV-2 microglial cell line was used for anti-neuroinflammatory activity evaluation. The croton oil-induced ear edema test was accomplished to evaluate the in vivo anti-inflammatory activity. Acetic acid-induced writhing together with formalin-induced paw licking assays were performed to evaluate the antinociceptive potential. Finally, the chemical characterization was accomplished by a UHPLC-MS analysis. ESM presented relevant antioxidant and antiglycant activity. NO production by BV-2 cells was reduced, indicating the relevant neuroprotective activity. ESM significantly decreased the mice ear edema induced by croton oil and the nociceptive stimulus induced by acetic acid and formalin by central and peripheral mechanisms. The flavonoids myricitrin, myricetin and quercetin were identified and, as far as we know, the alkaloid reserpine was reported in the species for the first time. The antioxidant and antiglycant potential of ESM, may be related to the in vivo anti-inflammatory and antinociceptive effects, and to the in vitro neuroinflammation inhibition.


Asunto(s)
Antioxidantes , Syzygium , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
2.
Neurol Sci ; 41(2): 451-455, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31506829

RESUMEN

Alzheimer's disease (AD) is the most incident neurodegenerative disorder, characterized by accumulation of extracellular amyloid-ß (Aß), intracellular neurofibrillary tangles, and cognitive impairment. The current available treatments are mainly based on the use of reversible acetylcholinesterase (AChE) inhibitors, which only ameliorate the cognitive deficits. However, it is important to develop disease-modifying drugs with neuroprotective effects in order to hamper the progression of the disease. Here, we describe the effect of four promising new drugs with additional protective characteristics on AD-associated memory changes. C57Bl/6 mice treated with the compounds received an intra-hippocampal injection of Aß1-40 and were submitted to the novel object recognition test, to evaluate memory recovery. All the compounds prevented memory loss. Compounds PQM-56 (4c) and PQM-67 (4g) showed the best profile of memory recovery, representing potential drug candidates for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Memoria/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Trastornos del Conocimiento/tratamiento farmacológico , Modelos Animales de Enfermedad , Trastornos de la Memoria/inducido químicamente , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Fragmentos de Péptidos/farmacología
3.
J Immunol ; 196(9): 3794-805, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26983788

RESUMEN

Blood-brain barrier activation and/or dysfunction are a common feature of human neurobrucellosis, but the underlying pathogenic mechanisms are largely unknown. In this article, we describe an immune mechanism for inflammatory activation of human brain microvascular endothelial cells (HBMEC) in response to infection with Brucella abortus Infection of HBMEC with B. abortus induced the secretion of IL-6, IL-8, and MCP-1, and the upregulation of CD54 (ICAM-1), consistent with a state of activation. Culture supernatants (CS) from glial cells (astrocytes and microglia) infected with B. abortus also induced activation of HBMEC, but to a greater extent. Although B. abortus-infected glial cells secreted IL-1ß and TNF-α, activation of HBMEC was dependent on IL-1ß because CS from B. abortus-infected astrocytes and microglia deficient in caspase-1 and apoptosis-associated speck-like protein containing a CARD failed to induce HBMEC activation. Consistently, treatment of CS with neutralizing anti-IL-1ß inhibited HBMEC activation. Both absent in melanoma 2 and Nod-like receptor containing a pyrin domain 3 are partially required for caspase-1 activation and IL-1ß secretion, suggesting that multiple apoptosis-associated speck-like protein containing CARD-dependent inflammasomes contribute to IL-1ß-induced activation of the brain microvasculature. Inflammasome-mediated IL-1ß secretion in glial cells depends on TLR2 and MyD88 adapter-like/TIRAP. Finally, neutrophil and monocyte migration across HBMEC monolayers was increased by CS from Brucella-infected glial cells in an IL-1ß-dependent fashion, and the infiltration of neutrophils into the brain parenchyma upon intracranial injection of B. abortus was diminished in the absence of Nod-like receptor containing a pyrin domain 3 and absent in melanoma 2. Our results indicate that innate immunity of the CNS set in motion by B. abortus contributes to the activation of the blood-brain barrier in neurobrucellosis and IL-1ß mediates this phenomenon.


Asunto(s)
Encéfalo/inmunología , Brucella abortus/inmunología , Brucelosis/inmunología , Neuroglía/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/microbiología , Proteínas Adaptadoras de Señalización CARD , Movimiento Celular , Células Cultivadas , Femenino , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/patología , Neuroglía/microbiología
4.
Neurosci Lett ; 711: 134408, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31374324

RESUMEN

Heavy episodic drinking or binge drinking during adolescence may elicit serious neurotoxic consequences in cerebral areas (e.g., the prefrontal cortex, i.e., PFC) and the hippocampus, delay the maturation of the brain and increase the probability of drug abuse and dependence. The endocannabinoid system plays an important role in neuroprotection by reducing oxidative stress and neuroinflammation. In the present study, we aimed to investigate whether URB597, an inhibitor of the metabolic enzyme of the endocannabinoid anandamide (AEA), altered the effects of acute and chronic alcohol administration beginning during rat adolescence on recognition memory, neuroinflammation and brain-derived neurotrophic factor (BDNF) levels. The animals received intraperitoneal injections of URB597 (0.3 mg/Kg) or vehicle followed by the oral administration of ethanol (3 or 6 g/Kg) or distilled water for 3 consecutive days in one week (acute binging) or over 4 weeks (chronic binging). The groups were submitted to the novel object recognition task, and their PFCs and hippocampi were removed for analyses of the cytokine and BDNF levels. URB597 potentiated long-term memory after the 3 mg/Kg acute alcohol administration. The chronic binge alcohol administration increased the interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels in the PFC and hippocampus and the interleukin (IL)-10 and BDNF levels in the PFC, and these effects were prevented by URB597. Our results indicate that the neuromodulation facilitated by AEA can reduce the neuroimmune response induced by the chronic administration of alcohol beginning in adolescence in rats.


Asunto(s)
Benzamidas/farmacología , Consumo Excesivo de Bebidas Alcohólicas , Encéfalo/efectos de los fármacos , Carbamatos/farmacología , Envejecimiento , Amidohidrolasas/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA