Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(8): 1297-1307.e11, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35325592

RESUMEN

Spindle- or lemon-shaped viruses infect archaea in diverse environments. Due to the highly pleomorphic nature of these virions, which can be found with cylindrical tails emanating from the spindle-shaped body, structural studies of these capsids have been challenging. We have determined the atomic structure of the capsid of Sulfolobus monocaudavirus 1, a virus that infects hosts living in nearly boiling acid. A highly hydrophobic protein, likely integrated into the host membrane before the virions assemble, forms 7 strands that slide past each other in both the tails and the spindle body. We observe the discrete steps that occur as the tail tubes expand, and these are due to highly conserved quasiequivalent interactions with neighboring subunits maintained despite significant diameter changes. Our results show how helical assemblies can vary their diameters, becoming nearly spherical to package a larger genome and suggest how all spindle-shaped viruses have evolved from archaeal rod-like viruses.


Asunto(s)
Virus de Archaea , Virus de Archaea/química , Virus de Archaea/genética , Virus de Archaea/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Genoma Viral , Virión/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(20): e2121586119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533283

RESUMEN

Phenol-soluble modulins (PSMs) are peptide-based virulence factors that play significant roles in the pathogenesis of staphylococcal strains in community-associated and hospital-associated infections. In addition to cytotoxicity, PSMs display the propensity to self-assemble into fibrillar species, which may be mediated through the formation of amphipathic conformations. Here, we analyze the self-assembly behavior of two PSMs, PSMα3 and PSMß2, which are derived from peptides expressed by methicillin-resistant Staphylococcus aureus (MRSA), a significant human pathogen. In both cases, we observed the formation of a mixture of self-assembled species including twisted filaments, helical ribbons, and nanotubes, which can reversibly interconvert in vitro. Cryo­electron microscopy structural analysis of three PSM nanotubes, two derived from PSMα3 and one from PSMß2, revealed that the assemblies displayed remarkably similar structures based on lateral association of cross-α amyloid protofilaments. The amphipathic helical conformations of PSMα3 and PSMß2 enforced a bilayer arrangement within the protofilaments that defined the structures of the respective PSMα3 and PSMß2 nanotubes. We demonstrate that, similar to amyloids based on cross-ß protofilaments, cross-α amyloids derived from these PSMs display polymorphism, not only in terms of the global morphology (e.g., twisted filament, helical ribbon, and nanotube) but also with respect to the number of protofilaments within a given peptide assembly. These results suggest that the folding landscape of PSM derivatives may be more complex than originally anticipated and that the assemblies are able to sample a wide range of supramolecular structural space.


Asunto(s)
Nanotubos , Staphylococcus aureus , Amiloide/química , Toxinas Bacterianas , Microscopía por Crioelectrón , Humanos , Péptidos/química , Staphylococcus aureus/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(33): 19643-19652, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759221

RESUMEN

Living organisms expend metabolic energy to repair and maintain their genomes, while viruses protect their genetic material by completely passive means. We have used cryo-electron microscopy (cryo-EM) to solve the atomic structures of two filamentous double-stranded DNA viruses that infect archaeal hosts living in nearly boiling acid: Saccharolobus solfataricus rod-shaped virus 1 (SSRV1), at 2.8-Å resolution, and Sulfolobus islandicus filamentous virus (SIFV), at 4.0-Å resolution. The SIFV nucleocapsid is formed by a heterodimer of two homologous proteins and is membrane enveloped, while SSRV1 has a nucleocapsid formed by a homodimer and is not enveloped. In both, the capsid proteins wrap around the DNA and maintain it in an A-form. We suggest that the A-form is due to both a nonspecific desolvation of the DNA by the protein, and a specific coordination of the DNA phosphate groups by positively charged residues. We extend these observations by comparisons with four other archaeal filamentous viruses whose structures we have previously determined, and show that all 10 capsid proteins (from four heterodimers and two homodimers) have obvious structural homology while sequence similarity can be nonexistent. This arises from most capsid residues not being under any strong selective pressure. The inability to detect homology at the sequence level arises from the sampling of viruses in this part of the biosphere being extremely sparse. Comparative structural and genomic analyses suggest that nonenveloped archaeal viruses have evolved from enveloped viruses by shedding the membrane, indicating that this trait may be relatively easily lost during virus evolution.


Asunto(s)
Virus de Archaea/química , Virus ADN/química , ADN Viral/química , Sulfolobales/virología , Sulfolobus/virología , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Evolución Biológica , Cápside/química , Cápside/ultraestructura , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/ultraestructura , ADN Viral/genética , Ambientes Extremos , Genoma Viral , Filogenia
4.
Nat Commun ; 14(1): 666, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750723

RESUMEN

Conjugation is a major mechanism of horizontal gene transfer promoting the spread of antibiotic resistance among human pathogens. It involves establishing a junction between a donor and a recipient cell via an extracellular appendage known as the mating pilus. In bacteria, the conjugation machinery is encoded by plasmids or transposons and typically mediates the transfer of cognate mobile genetic elements. Much less is known about conjugation in archaea. Here, we determine atomic structures by cryo-electron microscopy of three conjugative pili, two from hyperthermophilic archaea (Aeropyrum pernix and Pyrobaculum calidifontis) and one encoded by the Ti plasmid of the bacterium Agrobacterium tumefaciens, and show that the archaeal pili are homologous to bacterial mating pili. However, the archaeal conjugation machinery, known as Ced, has been 'domesticated', that is, the genes for the conjugation machinery are encoded on the chromosome rather than on mobile genetic elements, and mediates the transfer of cellular DNA.


Asunto(s)
Aeropyrum , Agrobacterium tumefaciens , Conjugación Genética , ADN de Archaea , Pyrobaculum , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , ADN de Archaea/genética , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Plásmidos , Aeropyrum/genética , Pyrobaculum/genética
5.
Science ; 377(6605): 535-539, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901135

RESUMEN

Covalent modification of carbon nanotubes is a promising strategy for engineering their electronic structures. However, keeping modification sites in registration with a nanotube lattice is challenging. We report a solution using DNA-directed, guanine (G)-specific cross-linking chemistry. Through DNA screening we identify a sequence, C3GC7GC3, whose reaction with an (8,3) enantiomer yields minimum disorder-induced Raman mode intensities and photoluminescence Stokes shift, suggesting ordered defect array formation. Single-particle cryo-electron microscopy shows that the C3GC7GC3 functionalized (8,3) has an ordered helical structure with a 6.5 angstroms periodicity. Reaction mechanism analysis suggests that the helical periodicity arises from an array of G-modified carbon-carbon bonds separated by a fixed distance along an armchair helical line. Our findings may be used to remodel nanotube lattices for novel electronic properties.

6.
Nat Microbiol ; 7(7): 1016-1027, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697796

RESUMEN

Bacterial conjugation mediates contact-dependent transfer of DNA from donor to recipient bacteria, thus facilitating the spread of virulence and resistance plasmids. Here we describe how variants of the plasmid-encoded donor outer membrane (OM) protein TraN cooperate with distinct OM receptors in recipients to mediate mating pair stabilization and efficient DNA transfer. We show that TraN from the plasmid pKpQIL (Klebsiella pneumoniae) interacts with OmpK36, plasmids from R100-1 (Shigella flexneri) and pSLT (Salmonella Typhimurium) interact with OmpW, and the prototypical F plasmid (Escherichia coli) interacts with OmpA. Cryo-EM analysis revealed that TraNpKpQIL interacts with OmpK36 through the insertion of a ß-hairpin in the tip of TraN into a monomer of the OmpK36 porin trimer. Combining bioinformatic analysis with AlphaFold structural predictions, we identified a fourth TraN structural variant that mediates mating pair stabilization by binding OmpF. Accordingly, we devised a classification scheme for TraN homologues on the basis of structural similarity and their associated receptors: TraNα (OmpW), TraNß (OmpK36), TraNγ (OmpA), TraNδ (OmpF). These TraN-OM receptor pairings have real-world implications as they reflect the distribution of resistance plasmids within clinical Enterobacteriaceae isolates, demonstrating the importance of mating pair stabilization in mediating conjugation species specificity. These findings will allow us to predict the distribution of emerging resistance plasmids in high-risk bacterial pathogens.


Asunto(s)
Proteínas Bacterianas , Conjugación Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Factor F , Porinas/genética , Porinas/metabolismo , Especificidad de la Especie
7.
Nat Commun ; 12(1): 407, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462223

RESUMEN

The exquisite structure-function correlations observed in filamentous protein assemblies provide a paradigm for the design of synthetic peptide-based nanomaterials. However, the plasticity of quaternary structure in sequence-space and the lability of helical symmetry present significant challenges to the de novo design and structural analysis of such filaments. Here, we describe a rational approach to design self-assembling peptide nanotubes based on controlling lateral interactions between protofilaments having an unusual cross-α supramolecular architecture. Near-atomic resolution cryo-EM structural analysis of seven designed nanotubes provides insight into the designability of interfaces within these synthetic peptide assemblies and identifies a non-native structural interaction based on a pair of arginine residues. This arginine clasp motif can robustly mediate cohesive interactions between protofilaments within the cross-α nanotubes. The structure of the resultant assemblies can be controlled through the sequence and length of the peptide subunits, which generates synthetic peptide filaments of similar dimensions to flagella and pili.


Asunto(s)
Nanotubos de Péptidos/ultraestructura , Arginina/química , Arginina/genética , Microscopía por Crioelectrón , Modelos Moleculares , Nanotubos de Péptidos/química , Conformación Proteica en Hélice alfa , Relación Estructura-Actividad
8.
Nat Commun ; 11(1): 3424, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647180

RESUMEN

We have determined the cryo-electron microscopic (cryo-EM) structures of two archaeal type IV pili (T4P), from Pyrobaculum arsenaticum and Saccharolobus solfataricus, at 3.8 Å and 3.4 Å resolution, respectively. This triples the number of high resolution archaeal T4P structures, and allows us to pinpoint the evolutionary divergence of bacterial T4P, archaeal T4P and archaeal flagellar filaments. We suggest that extensive glycosylation previously observed in T4P of Sulfolobus islandicus is a response to an acidic environment, as at even higher temperatures in a neutral environment much less glycosylation is present for Pyrobaculum than for Sulfolobus and Saccharolobus pili. Consequently, the Pyrobaculum filaments do not display the remarkable stability of the Sulfolobus filaments in vitro. We identify the Saccharolobus and Pyrobaculum T4P as host receptors recognized by rudivirus SSRV1 and tristromavirus PFV2, respectively. Our results illuminate the evolutionary relationships among bacterial and archaeal T4P filaments and provide insights into archaeal virus-host interactions.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/química , Evolución Biológica , Secuencia de Aminoácidos , Archaea/virología , Proteínas Arqueales/ultraestructura , Secuencia Conservada , Glicosilación , Dominios Proteicos , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA