Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(8): 3380-3384, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35389652

RESUMEN

We have studied the radio frequency dielectric response of a system consisting of separate polar water molecules periodically arranged in nanocages formed by the crystal lattice of the gemstone beryl. Below T = 20-30 K, quantum effects start to dominate the properties of the electric dipolar system as manifested by a crossover between the Curie-Weiss and the Barrett regimes in the temperature-dependent real dielectric permittivity ε'(T). When analyzing in detail the temperature evolution of the reciprocal permittivity (ε')-1 down to T ≈ 0.3 K and comparing it with the data obtained for conventional quantum paraelectrics, like SrTiO3, KTaO3, we discovered clear signatures of a quantum-critical behavior of the interacting water molecular dipoles: Between T = 6 and 14 K, the reciprocal permittivity follows a quadratic temperature dependence and displays a shallow minimum below 3 K. This is the first observation of "dielectric fingerprints" of quantum-critical phenomena in a paraelectric system of coupled point electric dipoles.

2.
Sci Rep ; 10(1): 18329, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110105

RESUMEN

We resolve the real-time coherent rotational motion of isolated water molecules encapsulated in fullerene-C60 cages by time-domain terahertz (THz) spectroscopy. We employ single-cycle THz pulses to excite the low-frequency rotational motion of water and measure the subsequent coherent emission of electromagnetic waves by water molecules. At temperatures below ~ 100 K, C60 lattice vibrational damping is mitigated and the quantum dynamics of confined water are resolved with a markedly long rotational coherence, extended beyond 10 ps. The observed rotational transitions agree well with low-frequency rotational dynamics of single water molecules in the gas phase. However, some additional spectral features with their major contribution at ~2.26 THz are also observed which may indicate interaction between water rotation and the C60 lattice phonons. We also resolve the real-time change of the emission pattern of water after a sudden cooling to 4 K, signifying the conversion of ortho-water to para-water over the course of 10s hours. The observed long coherent rotational dynamics of isolated water molecules confined in C60 makes this system an attractive candidate for future quantum technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA