Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pediatr Crit Care Med ; 20(5): e231-e239, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31058792

RESUMEN

OBJECTIVES: Stenotrophomonas maltophilia is a gram-negative opportunistic bacterium that may cause a myriad of clinical diseases in immunocompromised individuals. We aimed to describe the clinical characteristics, risk factors, mortality, and treatment of S. maltophilia bacteremia in critically ill children, a topic on which data are sparse. DESIGN: A multicenter observational retrospective study in which medical charts of critically ill children with S. maltophilia bacteremia were reviewed between 2012 and 2017. SETTING: Data were collected from each of the four largest PICUs nationwide, allocated in tertiary medical centers to which children with complex conditions are referred regularly. PATIENTS: A total of 68 suitable cases of S. maltophilia bacteremia were retrieved and reviewed. MEASUREMENTS AND MAIN RESULTS: The total occurrence rate of S. maltophilia isolation had increased significantly during the study period (r = 0.65; p = 0.02). The crude mortality was 42%, and the attributed mortality was 18%. Significant risk factors for mortality were a longer length of hospital stay prior to infection (33 d in nonsurvivors vs 28 in survivors; p = 0.03), a nosocomial source of infection (p = 0.02), presentation with septic shock (p < 0.001), and treatment with chemotherapy (p = 0.007) or carbapenem antibiotics (p = 0.05) prior to culture retrieval. On multivariate analysis, septic shock (odds ratio, 14.6; 95% CI, 1.45-147.05; p = 0.023) and being treated with chemotherapy prior to infection (odds ratio, 5.2; 95% CI, 1.59-17.19; p = 0.006)] were associated with mortality. The combination of ciprofloxacin, trimethoprim-sulfamethoxazole, and minocycline resulted in the longest survival time (p < 0.01). CONCLUSIONS: The significant attributed mortality associated with S. maltophilia bacteremia in critically ill children calls for an aggressive therapeutic approach. The findings of this investigation favor a combination of trimethoprim-sulfamethoxazole, ciprofloxacin, and minocycline.


Asunto(s)
Antibacterianos/administración & dosificación , Ciprofloxacina/administración & dosificación , Infecciones por Bacterias Gramnegativas , Minociclina/administración & dosificación , Stenotrophomonas maltophilia/inmunología , Sulfadoxina/administración & dosificación , Trimetoprim/administración & dosificación , Niño , Preescolar , Comorbilidad , Enfermedad Crítica , Combinación de Medicamentos , Femenino , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/mortalidad , Humanos , Huésped Inmunocomprometido , Lactante , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Masculino , Estudios Retrospectivos , Factores de Riesgo
2.
Artículo en Inglés | MEDLINE | ID: mdl-30873124

RESUMEN

Bone marrow adipose tissue (MAT) is influenced by nutritional cues, and participates in whole body energy metabolism. To investigate the role of Sirtuin1 (Sirt1), a key player in metabolism, in MAT, marrow adiposity was evaluated in inbred 5-month-old 129/Sv Sirt1 haplo-insufficient (Sirt1 Δ/+) and wild type (WT) mice. Decreased expression of the thermogenic genes: Prdm16, Pgc1α, Foxc2, Dio2, and ß3AR was detected in whole tibiae derived from Sirt1 Δ/+ compared to WT female mice. Similarly, decreased expression of Prdm16 and Pgc1α was observed in primary bone marrow mesenchymal stem cell (BM-MSC) cultures obtained from Sirt1 Δ/+ compared to WT female mice, suggesting a cell autonomous effect of Sirt1 in BM-MSCs. In vitro, Sirt1 over-expression in the mesenchymal embryonic fibroblast stem cell line C3HT101/2 increased Pgc1α and Prdm16 protein level. Similarly, pharmacologic activation of Sirt1 by SRT3025 increased Foxc2, Pgc1α, Dio2, Tfam, and Cyc1 expression while inhibition of Sirt1 by EX527 down-regulated UCP1 in C3HT101/2 cells. Importantly, in human femoral BM-MSCs obtained from female patients undergoing hip operations for fracture or osteoarthritis, Sirt1 activation by SRT3025 increased PGC1α mRNA and protein level. Blocking sclerostin, an inhibitor of the WNT pathway and a Sirt1 target, by the monoclonal humanized antibody (Sc-AbII), stimulated ß3AR, PRDM16, and UCP1 gene expression, and increased PGC1α protein level. These results show that Sirt1 stimulates a thermogenic gene program in marrow adipocytes in mice and humans via PGC1α activation and sclerostin inhibition. The implications of these findings to bone health, hematopoiesis and whole body energy metabolism remain to be investigated.

3.
PLoS One ; 10(7): e0134391, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226624

RESUMEN

Increased osteoclast-mediated bone resorption is characteristic of osteoporosis, malignant bone disease and inflammatory arthritis. Targeted deletion of Sirtuin1 (Sirt1), a key player in aging and metabolism, in osteoclasts results in increased osteoclast-mediated bone resorption in vivo, making it a potential novel therapeutic target to block bone resorption. Sirt1 activating compounds (STACs) were generated and were investigated in animal disease models and in humans however their mechanism of action was a source of controversy. We studied the effect of SRT2183 and SRT3025 on osteoclastogenesis in bone-marrow derived macrophages (BMMs) in vitro, and discovered that these STACs inhibit RANKL-induced osteoclast differentiation, fusion and resorptive capacity without affecting osteoclast survival. SRT2183 and SRT3025 activated AMPK, increased Sirt1 expression and decreased RelA/p65 lysine310 acetylation, critical for NF-κB activation, and an established Sirt1 target. However, inhibition of osteoclastogenesis by these STACs was also observed in BMMs derived from sirt1 knock out (sirt1-/-) mice lacking the Sirt1 protein, in which neither AMPK nor RelA/p65 lysine 310 acetylation was affected, confirming that these effects require Sirt1, but suggesting that Sirt1 is not essential for inhibition of osteoclastogenesis by these STACs under these conditions. In sirt1 null osteoclasts treated with SRT2183 or SRT3025 Sirt3 was found to be down-regulated. Our findings suggest that SRT2183 and SRT3025 activate Sirt1 and inhibit RANKL-induced osteoclastogenesis in vitro however under conditions of Sirt1 deficiency can affect Sirt3. As aging is associated with reduced Sirt1 level and activity, the influence of STACs on Sirt3 needs to be investigated in vivo in animal and human disease models of aging and osteoporosis.


Asunto(s)
Anilidas/farmacología , Células de la Médula Ósea/fisiología , Regulación hacia Abajo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Macrófagos/citología , Osteoclastos/fisiología , Ligando RANK/fisiología , Sirtuina 1/fisiología , Sirtuina 3/fisiología , Tiazoles/farmacología , Animales , Línea Celular , Femenino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA