Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Clin Microbiol ; 56(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29118174

RESUMEN

The FDA-CDC Antimicrobial Resistance Isolate Bank was created in July 2015 as a publicly available resource to combat antimicrobial resistance. It is a curated repository of bacterial isolates with an assortment of clinically important resistance mechanisms that have been phenotypically and genotypically characterized. In the first 2 years of operation, the bank offered 14 panels comprising 496 unique isolates and had filled 486 orders from 394 institutions throughout the United States. New panels are being added.


Asunto(s)
Bacterias/aislamiento & purificación , Bancos de Muestras Biológicas , Farmacorresistencia Microbiana , Hongos/aislamiento & purificación , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bancos de Muestras Biológicas/organización & administración , Bancos de Muestras Biológicas/normas , Centers for Disease Control and Prevention, U.S. , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/microbiología , Hongos/efectos de los fármacos , Hongos/genética , Humanos , Estados Unidos , United States Food and Drug Administration
2.
J Bacteriol ; 193(19): 5450-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784931

RESUMEN

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Asunto(s)
Genoma Bacteriano/genética , Xanthomonas/genética , Arabidopsis/microbiología , Datos de Secuencia Molecular , Oryza/microbiología , Xanthomonas/fisiología
3.
PLoS Genet ; 2(2): e21, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16482227

RESUMEN

Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.


Asunto(s)
Ehrlichia/genética , Ehrlichiosis/genética , Genómica/métodos , Animales , Biotina/metabolismo , Reparación del ADN , Ehrlichiosis/microbiología , Genoma , Humanos , Modelos Biológicos , Filogenia , Rickettsia/genética , Garrapatas
4.
J Food Prot ; 80(11): 1815-1820, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28981377

RESUMEN

Because some significant outbreaks of human salmonellosis have been traced to contaminated animal feed, the rapid and efficient detection of Salmonella in feed is essential. However, the current U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM) culture method that uses lactose broth as a preenrichment medium has not reliably supported the results of real-time PCR assays for certain foods. We evaluated the BAM culture method and a quantitative real-time PCR (qPCR) assay using two preenrichment media, modified buffered peptone water and lactose broth, to detect Salmonella enterica subsp. enterica serovar Cubana in naturally contaminated chick feed. After 24 h of incubation, the qPCR method was as sensitive as the culture method when modified buffered peptone water was used as the preenrichment medium but less sensitive than culture when lactose broth was used. After 48 h of incubation, detection of Salmonella Cubana by qPCR and by culture in either preenrichment medium was equivalent. We also compared the performance of the traditional serotyping method, which uses pure cultures of Salmonella grown on blood agar, to two molecular serotyping methods. The serotyping method based on whole genome sequencing also requires pure cultures, but the PCR-based molecular serotyping method can be done directly with the enriched culture medium. The PCR-based molecular serotyping method provided simple and rapid detection and identification of Salmonella Cubana. However, whole genome sequencing allows accurate identification of many Salmonella serotypes and highlights variations in the genomes, even in tight genomic clusters. We also compared the genome of the chick feed isolate with 58 Salmonella Cubana strains in GenBank and found that the chick feed isolate was very closely related to an isolate from a foodborne outbreak involving alfalfa sprouts.


Asunto(s)
Alimentación Animal , Salmonella enterica , Alimentación Animal/microbiología , Animales , Técnicas Bacteriológicas , Tampones (Química) , Pollos , Medios de Cultivo , Humanos , Reacción en Cadena de la Polimerasa/métodos , Salmonella enterica/aislamiento & purificación , Serogrupo , Serotipificación , Verduras/microbiología
5.
Genome Announc ; 2(5)2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25301652

RESUMEN

We report the draft genome sequences of Streptococcus bovis strain ATCC 33317 (CVM42251) isolated from cow dung and strain JB1 (CVM42252) isolated from a cow rumen in 1977. The strains were sequenced using the Genome Sequencer FLX 454 system. The genome sizes are approximately 2 Mb and 2.2 Mb, respectively.

6.
Genome Announc ; 2(1)2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24459266

RESUMEN

We report the draft genomes of Salmonella enterica subsp. enterica serovar Cubana strain CVM42234, isolated from chick feed in 2012, and S. Cubana strain 76814, isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 bp, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA