Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(1-2): 88-104, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594176

RESUMEN

The primary task of white adipose tissue (WAT) is the storage of lipids. However, "beige" adipocytes also exist in WAT. Beige adipocytes burn fat and dissipate the energy as heat, but their abundance is diminished in obesity. Stimulating beige adipocyte development, or WAT browning, increases energy expenditure and holds potential for combating metabolic disease and obesity. Here, we report that insulin and leptin act together on hypothalamic neurons to promote WAT browning and weight loss. Deletion of the phosphatases PTP1B and TCPTP enhanced insulin and leptin signaling in proopiomelanocortin neurons and prevented diet-induced obesity by increasing WAT browning and energy expenditure. The coinfusion of insulin plus leptin into the CNS or the activation of proopiomelanocortin neurons also increased WAT browning and decreased adiposity. Our findings identify a homeostatic mechanism for coordinating the status of energy stores, as relayed by insulin and leptin, with the central control of WAT browning.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Proopiomelanocortina/metabolismo , Adiposidad , Animales , Regulación de la Temperatura Corporal , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Obesidad/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34187898

RESUMEN

An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15-/- mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Cisplatino/administración & dosificación , Cisplatino/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Glucocorticoides/metabolismo , Factor 15 de Diferenciación de Crecimiento/administración & dosificación , Humanos , Lipopolisacáridos , Ratones , Ratas , Tunicamicina/farmacología
3.
J Neurosci ; 36(12): 3531-40, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27013681

RESUMEN

Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9-39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9-39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. SIGNIFICANCE STATEMENT: Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS are relevant for energy balance control by GLP-1 signaling. Here, we report that GLP-1R agonists activate and internalize within NTS astrocytes, while behavioral data suggest the pharmacological relevance of NTS astrocytic GLP-1R activation for food intake and body weight. These findings support a previously unknown role for CNS astrocytes in energy balance control by GLP-1 signaling.


Asunto(s)
Regulación del Apetito/fisiología , Astrocitos/fisiología , Conducta Alimentaria/fisiología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Homeostasis/fisiología , Bulbo Raquídeo/metabolismo , Animales , Metabolismo Energético/fisiología , Retroalimentación Fisiológica/fisiología , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
4.
Hum Mol Genet ; 23(18): 4995-5008, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24833719

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron disease remains unclear. Leptin is an adipocyte-derived hormone that regulates whole-animal energy expenditure. Here, we report that placing mutant superoxide dismutase 1 (SOD1) mice in a leptin-deficient background improves energy homeostasis and slows disease progression. Leptin-deficient mutant SOD1 mice possess increased bodyweight and fat mass, as well as decreased energy expenditure. These observations coincide with enhanced survival, improved strength and decreased motor neuron loss. These results suggest that altering whole-body energy metabolism in mutant SOD1 mice can mitigate disease progression. We propose that manipulations that increase fat mass and reduce energy expenditure will be beneficial in the setting of motor neuron disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Leptina/deficiencia , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Peso Corporal , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Masculino , Ratones , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Superóxido Dismutasa-1
5.
Clin Sci (Lond) ; 130(11): 881-93, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26935109

RESUMEN

Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair endothelial function via COX-2 and ROS-dependent mechanisms.


Asunto(s)
Células Endoteliales/metabolismo , Metabolismo Energético/genética , Neuronas/metabolismo , Proopiomelanocortina/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Factor de Necrosis Tumoral alfa/metabolismo , Tejido Adiposo/metabolismo , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Ciclooxigenasa 2/metabolismo , Metabolismo Energético/fisiología , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Factor de Necrosis Tumoral alfa/genética , Aumento de Peso/genética
6.
J Biol Chem ; 289(46): 31682-31692, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25288805

RESUMEN

Neuronal protein-tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here, we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways, whereas PTP1B inhibition augments TrkB signaling. Notably, brains of Ptpn1(-/-) mice exhibit enhanced TrkB phosphorylation, and Ptpn1(-/-) mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular Tumoral , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Unión Proteica , Receptor trkB , Transducción de Señal , Temperatura
7.
Pharmacol Res ; 102: 235-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523876

RESUMEN

Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hipertensión/sangre , Hipertensión/metabolismo , Leptina/farmacología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Obesidad/metabolismo , Fenilefrina/farmacología , Proopiomelanocortina/efectos de los fármacos , Receptores Adrenérgicos alfa/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(47): 19226-31, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129613

RESUMEN

Type 1 interferons (IFN1) elicit antiviral defenses by activating the cognate receptor composed of IFN-α/ß receptor chain 1 (IFNAR1) and IFNAR2. Down-regulation of this receptor occurs through IFN1-stimulated IFNAR1 ubiquitination, which exposes a Y466-based linear endocytic motif within IFNAR1 to recruitment of the adaptin protein-2 complex (AP2) and ensuing receptor endocytosis. Paradoxically, IFN1-induced Janus kinase-mediated phosphorylation of Y466 is expected to decrease its affinity for AP2 and to inhibit the endocytic rate. To explain how IFN1 promotes Y466 phosphorylation yet stimulates IFNAR1 internalization, we proposed that the activity of a protein tyrosine phosphatase (PTP) is required to enable both events by dephosphorylating Y466. An RNAi-based screen identified PTP1B as a specific regulator of IFNAR1 endocytosis stimulated by IFN1, but not by ligand-independent inducers of IFNAR1 ubiquitination. PTP1B is a promising target for treatment of obesity and diabetes; numerous research programs are aimed at identification and characterization of clinically relevant inhibitors of PTP1B. PTP1B is capable of binding and dephosphorylating IFNAR1. Genetic or pharmacologic modulation of PTP1B activity regulated IFN1 signaling in a manner dependent on the integrity of Y466 within IFNAR1 in human cells. These effects were less evident in mouse cells whose IFNAR1 lacks an analogous motif. PTP1B inhibitors robustly augmented the antiviral effects of IFN1 against vesicular stomatitis and hepatitis C viruses in human cells and proved beneficial in feline stomatitis patients. The clinical significance of these findings in the context of using PTP1B inhibitors to increase the therapeutic efficacy of IFN against viral infections is discussed.


Asunto(s)
Antivirales/farmacología , Endocitosis/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Estabilidad Proteica/efectos de los fármacos , Receptor de Interferón alfa y beta/química , Transducción de Señal/efectos de los fármacos
9.
Cell Mol Gastroenterol Hepatol ; 17(2): 279-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37844795

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS: GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS: Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS: Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Estudio de Asociación del Genoma Completo , Glicerol , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Fosfatos , Lípidos
10.
Nat Med ; 12(8): 917-24, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845389

RESUMEN

Obesity is a major health problem and a risk factor for type 2 diabetes. Leptin, an adipocyte-secreted hormone, acts on the hypothalamus to inhibit food intake and increase energy expenditure. Most obese individuals develop hyperleptinemia and leptin resistance, limiting the therapeutic efficacy of exogenously administered leptin. Mice lacking the tyrosine phosphatase PTP1B are protected from diet-induced obesity and are hypersensitive to leptin, but the site and mechanism for these effects remain controversial. We generated tissue-specific PTP1B knockout (Ptpn1(-/-)) mice. Neuronal Ptpn1(-/-) mice have reduced weight and adiposity, and increased activity and energy expenditure. In contrast, adipose PTP1B deficiency increases body weight, whereas PTP1B deletion in muscle or liver does not affect weight. Neuronal Ptpn1(-/-) mice are hypersensitive to leptin, despite paradoxically elevated leptin levels, and show improved glucose homeostasis. Thus, PTP1B regulates body mass and adiposity primarily through actions in the brain. Furthermore, neuronal PTP1B regulates adipocyte leptin production and probably is essential for the development of leptin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Peso Corporal/genética , Regulación Enzimológica de la Expresión Génica , Leptina/administración & dosificación , Neuronas/enzimología , Proteínas Tirosina Fosfatasas/genética , Tejido Adiposo/fisiología , Animales , Esquema de Medicación , Ingestión de Alimentos , Glucosa/metabolismo , Homeostasis , Inyecciones Intraperitoneales , Leptina/metabolismo , Leptina/fisiología , Masculino , Ratones , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA