Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667349

RESUMEN

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Linfocitos B/inmunología , COVID-19 , Convalecencia , Células 3T3 , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/citología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
2.
Nature ; 600(7889): 530-535, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34670266

RESUMEN

The emergence of SARS-CoV-2 variants is jeopardizing the effectiveness of current vaccines and limiting the application of monoclonal antibody-based therapy for COVID-19 (refs. 1,2). Here we analysed the memory B cells of five naive and five convalescent people vaccinated with the BNT162b2 mRNA vaccine to investigate the nature of the B cell and antibody response at the single-cell level. Almost 6,000 cells were sorted, over 3,000 cells produced monoclonal antibodies against the spike protein and more than 400 cells neutralized the original SARS-CoV-2 virus first identified in Wuhan, China. The B.1.351 (Beta) and B.1.1.248 (Gamma) variants escaped almost 70% of these antibodies, while a much smaller portion was impacted by the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants. The overall loss of neutralization was always significantly higher in the antibodies from naive people. In part, this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in people who were convalescent and generated potent and broadly neutralizing antibodies. Our data suggest that people who are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Células B de Memoria/inmunología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/aislamiento & purificación , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos ampliamente neutralizantes/aislamiento & purificación , Convalecencia , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Masculino , Pruebas de Neutralización , Seroconversión , Análisis de la Célula Individual , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
J Med Virol ; 96(6): e29728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860589

RESUMEN

Since May 2022, several countries outside of Africa experienced multiple clusters of monkeypox virus (MPXV)-associated disease. In the present study, anti-MPXV and anti-vaccinia virus (VACV) neutralizing antibody responses were evaluated in two cohorts of subjects from the general Italian population (one half born before the WHO-recommended end of smallpox vaccination in 1980, the other half born after). Higher titers (either against MPXV or VACV) were observed in the cohort of individuals born before the interruption of VACV vaccination. An association between VACV and MPXV antibody levels was observed, suggesting that the smallpox vaccination may confer some degree of cross-protection against MPXV infection. Results from this study highlight low levels of immunity toward the assessed Orthopoxviruses, especially in young adults, advocating the introduction of a VACV- or MPXV-specific vaccine in case of resurgence of monkeypox disease outbreaks.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Monkeypox virus , Vacuna contra Viruela , Vacunación , Virus Vaccinia , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Masculino , Adulto , Femenino , Vacuna contra Viruela/inmunología , Vacuna contra Viruela/administración & dosificación , Italia/epidemiología , Monkeypox virus/inmunología , Adulto Joven , Estudios Seroepidemiológicos , Persona de Mediana Edad , Virus Vaccinia/inmunología , Mpox/epidemiología , Mpox/inmunología , Adolescente , Viruela/prevención & control , Viruela/inmunología , Viruela/epidemiología , Protección Cruzada/inmunología , Anciano , Estudios de Cohortes , Niño
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34417349

RESUMEN

To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.


Asunto(s)
Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/farmacología , Sitios de Unión , COVID-19/genética , COVID-19/virología , Chlorocebus aethiops , Convalecencia , Expresión Génica , Humanos , Evasión Inmune , Sueros Inmunes/química , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero
5.
J Med Virol ; 95(7): e28923, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403896

RESUMEN

The validation of a bioanalytical method allows us to determine its validity for a designated purpose and to guarantee the reliability of its analytical results. The virus neutralization assay has proved to be suitable for the detection and quantification of specific serum-neutralizing antibodies against respiratory syncytial virus subtypes A and B. Respiratory syncytial virus is a negative-sense RNA virus and is responsible for the majority of acute lower respiratory tract infections in infants and older adults worldwide. Owing to its widespread infection, the WHO considers it a target for the development of preventive vaccines. Despite the high impact of its infections, however, only one vaccine has been recently approved. The aim of this paper is to provide a detailed validation process for the microneutralization assay and to demonstrate that this method can effectively support the efficacy assessment of candidate vaccines and the definition of correlates of protection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Humanos , Anciano , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Antivirales , Reproducibilidad de los Resultados , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Neutralizantes
6.
J Clin Virol ; 173: 105661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38503118

RESUMEN

BACKGROUND: Various SARS-CoV-2 variants of concerns (VOCs) characterized by higher transmissibility and immune evasion have emerged. Despite reduced vaccine efficacy against VOCs, currently available vaccines provide protection. Population-based evidence on the humoral immune response after booster vaccination is crucial to guide future vaccination strategies and in preparation for imminent COVID-19 waves. METHODS: This multicenter, population-based cohort study included 4697 individuals ≥18 years of age who received a booster vaccination. Antibody levels against SARS-CoV-2 receptor binding domain (RBD) and neutralizing antibodies against wild-type (WT) virus and Omicron variants were assessed at baseline (day of booster vaccination) and after four weeks. Safety was evaluated daily within the first week using a participant-completed electronic diary. Antibody levels were compared across different vaccination strategies, taking into account individual host factors. RESULTS: Our main model including 3838 participants revealed that individuals who received a booster with mRNA-1273 compared to BNT162b2 vaccine had a significantly higher increase (95 %CI) in anti-RBD-antibody levels (37,707 BAU/mL [34,575-40,839] vs. 27,176 BAU/mL [26,265-28,087]), and of neutralization levels against WT (1,681 [1490-1872] vs. 1141 [1004-1278] and Omicron variant (422 [369-474] vs. 329 [284-374]). Neutralizing antibody titres highly correlated with anti-RBD antibodies, with neutralizing capacity 4.4 fold higher against WT compared to Omicron. No differences in safety were found between the two booster vaccines. CONCLUSION: Our study underlines the superiority of a booster vaccination with mRNA-1273, independent of the primary vaccination and therefore provides guidance on the vaccination strategy.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , Masculino , COVID-19/prevención & control , COVID-19/inmunología , Femenino , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , Persona de Mediana Edad , Adulto , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Anciano , Estudios de Cohortes , Vacunación , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
7.
Z Gesundh Wiss ; : 1-6, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36776202

RESUMEN

Aim: The present study aimed at assessing the prevalence of antibodies against SARS-CoV-2 in the general population in the province of Bari (Apulia region, Southern Italy) during the year 2020. Subject and methods: In this study, 1325 serum samples collected from January to December 2020 were tested for the presence of IgM and IgG antibodies against whole-virus SARS-CoV-2 antigen by commercial ELISA. Positive samples were further tested by in-house ELISA for the detection of anti-receptor binding domain (RBD) IgM and IgG antibodies and by micro-neutralization (MN) assay for the detection of neutralizing antibody. Results: One hundred (7.55%) samples had the presence of at least one antibody class against SARS-CoV-2 by commercial ELISA, of which 88 (6.6%) showed IgG and 19 (1.4%) showed IgM antibodies. The proportion of samples with IgG antibodies increased from 1.9% in January-February to 9.6% in November-December, while no significant increase was observed for IgM. When tested by in-house ELISA and MN assay, 17.0% and 31.6% were found positive to RBD IgG and RBD IgM, respectively, while 12.0% showed neutralizing antibody. Conclusion: The proportion of samples with SARS-CoV-2 IgG antibodies increased during 2020, especially in the second half of the year, consistent with data reported by the routine epidemiological surveillance of SARS-CoV-2 cases. Despite the high number of reported cases, the seroprevalence values are relatively low, and only a small proportion of samples had neutralizing antibodies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10389-023-01834-3.

8.
Front Public Health ; 11: 1195674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415699

RESUMEN

Introduction: In early to mid-2022, an unexpected outbreak of Monkeypox virus infections occurred outside the African endemic regions. Vaccines originally developed in the past to protect against smallpox are one of the available countermeasures to prevent and protect against Orthopoxvirus infections. To date, there are few studies on the cross-reactivity of neutralizing antibodies elicited by previous vaccinia virus-based vaccination and/or Monkeypox virus infection. The aim of this study was to evaluate a possible approach to performing Monkeypox and vaccinia live-virus microneutralization assays in which the read-out is based on the production of cytopathic effect in the cell monolayer. Methods: Given the complexity of Orthopoxviruses, the microneutralization assay was performed in such a way as to uncover a potential role of complement, with and without the addition of an external source of Baby Rabbit Complement. A set of human serum samples from individuals who had been naturally infected with Monkeypox virus and individuals who may have and not have undergone vaccinia virus vaccinations, was used to evaluate the performance, sensitivity, and specificity of the assay. Results and conclusions: The results of the present study confirm the presence and cross-reactivity of antibodies elicited by vaccinia-based vaccines, which proved able to neutralize the Monkeypox virus in the presence of an external source of complement.


Asunto(s)
Mpox , Vacuna contra Viruela , Vaccinia , Humanos , Virus Vaccinia , Mpox/prevención & control , Anticuerpos Antivirales , Monkeypox virus , Anticuerpos Neutralizantes , Vacunación
9.
Acta Trop ; 248: 107042, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863379

RESUMEN

The Omicron variant is the most divergent, displaying more mutations than previous SARS-CoV-2 variants, particularly in the gene that encodes the spike protein. This study aimed to assess the persistence of neutralizing antibodies towards the SARS-CoV-2 Omicron sublineages (BA.2, BA.5, BQ.1, XBB and XBB1.5) six months after the third dose in different vaccination regimens. Subjects who received 3 doses of mRNA vaccine retained their neutralization activity against BA.2 and BA.5, even though 56.3% and 66.7% showed a ≥ 2-fold reduction in the neutralizing antibody titre, respectively. Subjects who had received the adenovirus-based vaccine plus a booster dose of mRNA vaccine retained their neutralization activity especially against BA.2. With regard to BQ.1, XBB and XBB.1.5, the majority of the subjects showed a ≥ 2-fold reduction in neutralizing antibody titre, with the greatest evasion being observed in the case of XBB. Overall, our results provide further evidence that triple homologous/heterologous vaccination and hybrid immunity result in detectable neutralizing antibodies against the ancestral virus; however, emerging Omicron sublineages, such as XBB and XBB.1.5, show a great evasive capacity, which compromises the effectiveness of current COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Italia , Anticuerpos Neutralizantes , Vacunación , Inmunidad , Vacunas de ARNm , Anticuerpos Antivirales
10.
Nat Commun ; 14(1): 1734, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977711

RESUMEN

Severe acute respiratory syndrome 2 Omicron BA.4 and BA.5 are characterized by high transmissibility and ability to escape natural and vaccine induced immunity. Here we test the neutralizing activity of 482 human monoclonal antibodies isolated from people who received two or three mRNA vaccine doses or from people vaccinated after infection. The BA.4 and BA.5 variants are neutralized only by approximately 15% of antibodies. Remarkably, the antibodies isolated after three vaccine doses target mainly the receptor binding domain Class 1/2, while antibodies isolated after infection recognize mostly the receptor binding domain Class 3 epitope region and the N-terminal domain. Different B cell germlines are used by the analyzed cohorts. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against coronavirus disease 2019.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacunas de ARNm , Anticuerpos Monoclonales , Inmunidad Adaptativa , Células Germinativas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
11.
Nat Commun ; 14(1): 53, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599850

RESUMEN

The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.


Asunto(s)
Formación de Anticuerpos , Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología
12.
Viruses ; 14(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35891420

RESUMEN

Italy was the second country affected by the SARS-CoV-2 pandemic; the virus spread mainly in Northern Italy with a subsequent diffusion to the center and southern part of the country. In this study, we aimed to assess the prevalence of antibodies against SARS-CoV-2 in the general population of the Siena province in the Tuscany region (Central Italy) during 2020. A total of 2480 serum samples collected from January to December 2020 were tested for IgM and IgG antibodies against SARS-CoV-2 by a commercial ELISA. Positive and borderline samples were further tested for the presence of anti-receptor-binding domain (RBD) IgM and IgG antibodies by an in-house ELISA and by a micro-neutralization assay. Out of the 2480 samples tested by the commercial ELISA, 81 (3.3%) were found to be positive or borderline for IgG and 58 (2.3%) for IgM in a total of 133 samples (5.4%) found to be positive or borderline for at least one antibody class. When the commercial ELISA and in-house ELISA/micro-neutralization assay results were combined, 26 samples (1.0%) were positive for RBD IgG, 11 (0.4%) for RBD IgM, and 23 (0.9%) for a neutralizing antibody. An increase in seroprevalence was observed during the year 2020, especially from the end of summer, consistent with the routine epidemiological surveillance of COVID-19 cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/epidemiología , Humanos , Inmunoglobulina G , Inmunoglobulina M , Pandemias , Estudios Seroepidemiológicos
13.
Nat Commun ; 13(1): 3375, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697673

RESUMEN

SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses. To answer this question, 276 neutralizing monoclonal antibodies (nAbs), previously isolated from seronegative and seropositive donors vaccinated with BNT162b2 mRNA vaccine, were tested for neutralization against the Omicron BA.1 and BA.2 variants, and SARS-CoV-1 virus. Only 14.2, 19.9 and 4.0% of tested antibodies neutralize BA.1, BA.2, and SARS-CoV-1 respectively. These nAbs recognize mainly the SARS-CoV-2 receptor binding domain (RBD) and target Class 3 and Class 4 epitope regions on the SARS-CoV-2 spike protein. Interestingly, around 50% of BA.2 nAbs did not neutralize BA.1 and among these, several targeted the NTD. Cross-protective antibodies derive from a variety of germlines, the most frequents of which were the IGHV1-58;IGHJ3-1, IGHV2-5;IGHJ4-1 and IGHV1-69;IGHV4-1. Only 15.6, 20.3 and 7.8% of predominant gene-derived nAbs elicited against the original Wuhan virus cross-neutralize Omicron BA.1, BA.2 and SARS-CoV-1 respectively. Our data provide evidence, at molecular level, of the presence of cross-neutralizing antibodies induced by vaccination and map conserved epitopes on the S protein that can inform vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Epítopos/genética , Humanos , Pruebas de Neutralización , Pandemias/prevención & control , ARN Mensajero/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
14.
Hum Vaccin Immunother ; 18(6): 2129196, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36269939

RESUMEN

The rapid replacement of Omicron BA.1 by BA.2 sublineage is very alarming, raising the question of whether BA.2 can escape the immunity acquired after BA.1 infection. We compared the neutralizing activity toward the Omicron BA.1 and BA.2 sub-lineages in five groups: COVID-19 patients; subjects who had received two doses of mRNA vaccine; subjects naturally infected with SARS-CoV-2 who had received two doses of mRNA; and subjects who had received three doses of homologous or heterologous vaccine. The results obtained highlight the importance of vaccine boosters in eliciting neutralizing antibody responses against Omicron sub-lineages, and suggest that the adenovirus vectored vaccine elicits a lower response against BA.1 than against BA.2 sub-lineage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Pacientes , Anticuerpos Neutralizantes , Anticuerpos Antivirales
15.
Commun Biol ; 5(1): 903, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056181

RESUMEN

The SARS-CoV-2 Omicron variant has rapidly replaced the Delta variant of concern. This new variant harbors worrisome mutations on the spike protein, which are able to escape the immunity elicited by vaccination and/or natural infection. To evaluate the impact and susceptibility of different serum samples to the Omicron variant BA.1, samples from COVID-19 patients and vaccinated individuals were tested for their ability to bind and neutralize the original SARS-CoV-2 virus and the Omicron variant BA.1. COVID-19 patients show the most drastic reduction in Omicron-specific antibody response in comparison with the response to the wild-type virus. Antibodies elicited by a triple homologous/heterologous vaccination regimen or following natural SARS-CoV-2 infection combined with a two-dose vaccine course, result in highest neutralization capacity against the Omicron variant BA.1. Overall, these findings confirm that vaccination of COVID-19 survivors and booster dose to vaccinees with mRNA vaccines is the correct strategy to enhance the antibody cross-protection against Omicron variant BA.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Formación de Anticuerpos , COVID-19/prevención & control , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Proteínas del Envoltorio Viral/genética
16.
Viruses ; 13(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34372553

RESUMEN

The recent spreading of new SARS-CoV-2 variants, carrying several mutations in the spike protein, could impact immune protection elicited by natural infection or conferred by vaccination. In this study, we evaluated the neutralizing activity against the viral variants that emerged in the United Kingdom (B.1.1.7), Brazil (P.1), and South Africa (B.1.351) in human serum samples from hospitalized patients infected by SARS-CoV-2 during the first pandemic wave in Italy in 2020. Of the patients studied, 59.5% showed a decrease (≥2 fold) in neutralizing antibody titer against B.1.1.7, 83.3% against P.1, and 90.5% against B.1.351 with respect to the original strain. The reduction in antibody titers against all analyzed variants, and in particular P.1 and B.1.351, suggests that previous symptomatic infection might be not fully protective against exposure to SARS-CoV-2 variants carrying a set of relevant spike mutations.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , SARS-CoV-2/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Chlorocebus aethiops , Mutación , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Reino Unido/epidemiología , Vacunación , Células Vero
17.
J Immunol Methods ; 489: 112937, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253698

RESUMEN

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 49.7 million cases of disease and 1,2 million deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays detecting different classes of antibodies constitute an excellent surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population. In addition, it can contribute to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to identify the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict human population immunity, possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, a subtyping IgG ELISA has been performed. Our findings showed a notable statistical correlation between the neutralization titers and the IgG, IgM and IgA ELISA responses against the receptor-binding domain of the spike protein. Thus confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories that do not have biosecurity level-3 facilities.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Células Cultivadas , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunidad Humoral , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Células Vero
18.
Nutrients ; 12(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403449

RESUMEN

This work aims to clarify the effect of dietary supplementation with Bisphenol A (BPA), a chemical widely present in beverage and food containers, on placental glucose transfer and pregnancy outcome. The study was performed on female Sprague Dawley rats fed with a diet containing BPA (2.5, 25 or 250 µg/Kg/day) for a period of a month (virgin state) plus 20 days during pregnancy. Western blot analysis and immunohistochemistry were performed in placental tissues for glucose type 1 transporter (GLUT1). Furthermore, human trophoblast, HTR8-SV/neo cells, were used to evaluate the effect of BPA on glucose transport and uptake. Studies in rats showed that food supplementation with BPA, produces a higher fetal weight (FW) to placenta weight (PW) ratio at the lowest BPA concentration. Such low concentrations also reduced maternal weight gain in late pregnancy and up-regulated placental expression of GLUT1. Treatment of HTR8-SV/neo with the non-toxic dose of 1 nM BPA confirmed up-regulation of GLUT1 expression and revealed higher activity of the transporter with an increase in glucose uptake and GLUT1 membrane translocation. Overall, these results indicate that prenatal exposure to BPA affects pregnancy and fetal growth producing changes in the placental nutrients-glucose transfer.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Glucosa/metabolismo , Intercambio Materno-Fetal/efectos de los fármacos , Fenoles/toxicidad , Placenta/metabolismo , Trofoblastos/efectos de los fármacos , Animales , Compuestos de Bencidrilo/administración & dosificación , Peso Corporal/efectos de los fármacos , Línea Celular , Femenino , Peso Fetal/efectos de los fármacos , Transportador de Glucosa de Tipo 1/análisis , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Tamaño de los Órganos/efectos de los fármacos , Fenoles/administración & dosificación , Placenta/anatomía & histología , Placenta/química , Embarazo , Ratas , Ratas Sprague-Dawley , Trofoblastos/metabolismo
19.
Viruses ; 12(9)2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927639

RESUMEN

The recent outbreak of a novel Coronavirus (SARS-CoV-2) and its rapid spread across the continents has generated an urgent need for assays to detect the neutralising activity of human sera or human monoclonal antibodies against SARS-CoV-2 spike protein and to evaluate the serological immunity in humans. Since the accessibility of live virus microneutralisation (MN) assays with SARS-CoV-2 is limited and requires enhanced bio-containment, the approach based on "pseudotyping" can be considered a useful complement to other serological assays. After fully characterising lentiviral pseudotypes bearing the SARS-CoV-2 spike protein, we employed them in pseudotype-based neutralisation assays in order to profile the neutralising activity of human serum samples from an Italian sero-epidemiological study. The results obtained with pseudotype-based neutralisation assays mirrored those obtained when the same panel of sera was tested against the wild type virus, showing an evident convergence of the pseudotype-based neutralisation and MN results. The overall results lead to the conclusion that the pseudotype-based neutralisation assay is a valid alternative to using the wild-type strain, and although this system needs to be optimised and standardised, it can not only complement the classical serological methods, but also allows serological assessments to be made when other methods cannot be employed, especially in a human pandemic context.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Lentivirus/genética , Pruebas de Neutralización/métodos , Pandemias , Neumonía Viral/virología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , COVID-19 , Línea Celular , Infecciones por Coronavirus/epidemiología , Humanos , Sueros Inmunes/inmunología , Italia/epidemiología , Plásmidos/genética , Neumonía Viral/epidemiología , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Transfección , Vesiculovirus/genética , Carga Viral
20.
bioRxiv ; 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33398278

RESUMEN

To investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed. ONE SENTENCE SUMMARY: Three mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA