Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 42(1): 155-158, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28059202

RESUMEN

Fluorophore saturation is the key factor limiting the speed and excitation range of fluorescence lifetime imaging microscopy (FLIM). For example, fluorophore saturation causes incorrect lifetime measurements when using conventional frequency-domain FLIM at high excitation powers. In this Letter, we present an analytical theoretical description of this error and present a method for compensating for this error in order to extract correct lifetime measurements in the limit of fluorophore saturation. We perform a series of simulations and experiments to validate our methods. The simulations and experiments show a 13.2× and a 2.6× increase in excitation range, respectively. The presented method is based on algorithms that can be easily applied to existing FLIM setups.

2.
Nat Commun ; 12(1): 4244, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244487

RESUMEN

Multiheterodyne techniques using frequency combs-radiation sources whose lines are perfectly evenly-spaced-have revolutionized science. By beating sources with the many lines of a comb, their spectra are recovered. Even so, these approaches are fundamentally limited to probing coherent sources, such as lasers. They are unable to measure most spectra that occur in nature. Here we present frequency comb ptychoscopy, a technique that allows for the spectrum of any complex broadband source to be retrieved using a comb. In this approach, the spectrum is reconstructed by unfolding the simultaneous beating of a source with each comb line. We demonstrate this both theoretically and experimentally, at microwave frequencies. This approach can reconstruct the spectrum of nearly any complex source to high resolution, and the speed, resolution, and generality of this technique will allow chip-scale frequency combs to have an impact in a wide swath of new applications, such as remote sensing and passive spectral imaging.

3.
Nat Commun ; 14(1): 2802, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193695
4.
Biomed Opt Express ; 9(9): 4077-4093, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615706

RESUMEN

We present a novel super-resolution fluorescence lifetime microscopy technique called generalized stepwise optical saturation (GSOS) that generalizes and extends the concept of the recently demonstrated stepwise optical saturation (SOS) super-resolution microscopy [Biomed. Opt. Express9, 1613 (2018)]. The theoretical basis of GSOS is developed based on exploring the dynamics of a two-level fluorophore model and using perturbation theory. We show that although both SOS and GSOS utilize the linear combination of M raw images to increase the imaging resolution by a factor of M , SOS is a special and the simplest case of GSOS. The super-resolution capability is demonstrated with theoretical analysis and numerical simulations for GSOS with sinusoidal and pulse-train modulations. Using GSOS with pulse-train modulation, super-resolution and fluorescence lifetime imaging microscopy (FLIM) images can be obtained simultaneously. The super-resolution FLIM capability is experimentally demonstrated with a cell sample on a custom-built two-photon frequency-domain (FD) FLIM system based on radio frequency analog signal processing. To our knowledge, this is the first implementation of super-resolution imaging in FD-FLIM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA