Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2322157121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648473

RESUMEN

Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.


Asunto(s)
Estado de Conciencia , Macaca mulatta , Imagen por Resonancia Magnética , Percepción del Tacto , Animales , Estado de Conciencia/fisiología , Percepción del Tacto/fisiología , Masculino , Tacto/fisiología , Evolución Biológica , Corteza Somatosensorial/fisiología , Encéfalo/fisiología , Envejecimiento/fisiología , Femenino , Giro del Cíngulo/fisiología
2.
J Immunol ; 212(5): 785-800, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38251887

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology. NK cells from NMOSD patients and MG patients with elevated disease burden exhibited reduced ADCC and CD56dimCD16hi NK cells, along with an elevated frequency of CD56dimCD16dim/- NK cells. We determined that ADCC induces a similar phenotypic shift in vitro. Bulk RNA sequencing distinguished the CD56dimCD16dim/- population from the canonical CD56dimCD16hi cytotoxic and CD56hiCD16- immunomodulatory subsets, as well as CD56hiCD16+ NK cells. Multiparameter immunophenotyping of NK cell markers, functional proteins, and receptors similarly showed that the CD56dimCD16dim/- subset exhibits a unique profile while still maintaining expression of characteristic NK markers CD56, CD94, and NKp44. Notably, expression of perforin and granzyme is reduced in comparison with CD56dimCD16hi NK cells. Moreover, they exhibit elevated trogocytosis capability, HLA-DR expression, and many chemokine receptors, including CCR7. In contrast with NMOSD and MG, myelin oligodendrocyte glycoprotein Ab disease NK cells did not exhibit functional, phenotypic, or transcriptomic perturbations. In summary, CD56dimCD16dim/- NK cells are a distinct peripheral blood immune cell population in humans elevated upon prior cytotoxic activity by the CD56dimCD16hi NK cell subset. The elevation of this subset in NMOSD and MG patients suggests prior ADCC activity.


Asunto(s)
Antineoplásicos , Autoanticuerpos , Humanos , Autoanticuerpos/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Células Asesinas Naturales , Citotoxicidad Inmunológica , Granzimas/metabolismo , Antineoplásicos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(3): e2207291120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634138

RESUMEN

A small proportion of multiple sclerosis (MS) patients develop new disease activity soon after starting anti-CD20 therapy. This activity does not recur with further dosing, possibly reflecting deeper depletion of CD20-expressing cells with repeat infusions. We assessed cellular immune profiles and their association with transient disease activity following anti-CD20 initiation as a window into relapsing disease biology. Peripheral blood mononuclear cells from independent discovery and validation cohorts of MS patients initiating ocrelizumab were assessed for phenotypic and functional profiles using multiparametric flow cytometry. Pretreatment CD20-expressing T cells, especially CD20dimCD8+ T cells with a highly inflammatory and central nervous system (CNS)-homing phenotype, were significantly inversely correlated with pretreatment MRI gadolinium-lesion counts, and also predictive of early disease activity observed after anti-CD20 initiation. Direct removal of pretreatment proinflammatory CD20dimCD8+ T cells had a greater contribution to treatment-associated changes in the CD8+ T cell pool than was the case for CD4+ T cells. Early disease activity following anti-CD20 initiation was not associated with reconstituting CD20dimCD8+ T cells, which were less proinflammatory compared with pretreatment. Similarly, this disease activity did not correlate with early reconstituting B cells, which were predominantly transitional CD19+CD24highCD38high with a more anti-inflammatory profile. We provide insights into the mode-of-action of anti-CD20 and highlight a potential role for CD20dimCD8+ T cells in MS relapse biology; their strong inverse correlation with both pretreatment and early posttreatment disease activity suggests that CD20-expressing CD8+ T cells leaving the circulation (possibly to the CNS) play a particularly early role in the immune cascades involved in relapse development.


Asunto(s)
Linfocitos T CD8-positivos , Esclerosis Múltiple , Humanos , Leucocitos Mononucleares , Citometría de Flujo , Recurrencia , Antígenos CD20
4.
Ann Neurol ; 93(6): 1053-1068, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866852

RESUMEN

OBJECTIVE: CHAMPION-NMOSD (NCT04201262) is a phase 3, open-label, externally controlled interventional study evaluating the efficacy and safety of the terminal complement inhibitor ravulizumab in adult patients with anti-aquaporin-4 antibody-positive (AQP4+) neuromyelitis optica spectrum disorder (NMOSD). Ravulizumab binds the same complement component 5 epitope as the approved therapeutic eculizumab but has a longer half-life, enabling an extended dosing interval (8 vs 2 weeks). METHODS: The availability of eculizumab precluded the use of a concurrent placebo control in CHAMPION-NMOSD; consequently, the placebo group of the eculizumab phase 3 trial PREVENT (n = 47) was used as an external comparator. Patients received weight-based intravenous ravulizumab on day 1 and maintenance doses on day 15, then once every 8 weeks. The primary endpoint was time to first adjudicated on-trial relapse. RESULTS: The primary endpoint was met; no patients taking ravulizumab (n = 58) had an adjudicated relapse (during 84.0 patient-years of treatment) versus 20 patients with adjudicated relapses in the placebo group of PREVENT (during 46.9 patient-years; relapse risk reduction = 98.6%, 95% confidence interval = 89.7%-100.0%, p < 0.0001). Median (range) study period follow-up time was 73.5 (11.0-117.7) weeks for ravulizumab. Most treatment-emergent adverse events were mild/moderate; no deaths were reported. Two patients taking ravulizumab experienced meningococcal infections. Both recovered with no sequelae; one continued ravulizumab treatment. INTERPRETATION: Ravulizumab significantly reduced relapse risk in patients with AQP4+ NMOSD, with a safety profile consistent with those of eculizumab and ravulizumab across all approved indications. ANN NEUROL 2023;93:1053-1068.


Asunto(s)
Neuromielitis Óptica , Adulto , Humanos , Neuromielitis Óptica/tratamiento farmacológico , Acuaporina 4 , Inactivadores del Complemento/uso terapéutico , Recurrencia
5.
Ann Neurol ; 94(4): 727-735, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37314750

RESUMEN

OBJECTIVE: This study was undertaken to investigate factors associated with aquaporin-4 (AQP4)-IgG serostatus change using a large serological database. METHODS: This retrospective study utilizes Mayo Clinic Neuroimmunology Laboratory data from 2007 to 2021. We included all patients with ≥2 AQP4-IgG tests (by cell-based assay). The frequency and clinical factors associated with serostatus change were evaluated. Multivariable logistic regression analysis examined whether age, sex, or initial titer was associated with serostatus change. RESULTS: There were 933 patients who had ≥2 AQP4-IgG tests with an initial positive result. Of those, 830 (89%) remained seropositive and 103 (11%) seroreverted to negative. Median interval to seroreversion was 1.2 years (interquartile range [IQR] = 0.4-3.5). Of those with sustained seropositivity, titers were stable in 92%. Seroreversion was associated with age ≤ 20 years (odds ratio [OR] = 2.25; 95% confidence interval [CI] = 1.09-4.63; p = 0.028) and low initial titer of ≤1:100 (OR = 11.44, 95% CI = 3.17-41.26, p < 0.001), and 5 had clinical attacks despite seroreversion. Among 62 retested after seroreversion, 50% returned to seropositive (median = 224 days, IQR = 160-371). An initial negative AQP4-IgG test occurred in 9,308 patients. Of those, 99% remained seronegative and 53 (0.3%) seroconverted at a median interval of 0.76 years (IQR = 0.37-1.68). INTERPRETATION: AQP4-IgG seropositivity usually persists over time with little change in titer. Seroreversion to negative is uncommon (11%) and associated with lower titers and younger age. Seroreversion was often transient, and attacks occasionally occurred despite prior seroreversion, suggesting it may not reliably reflect disease activity. Seroconversion to positive is rare (<1%), limiting the utility of repeat testing in seronegative patients unless clinical suspicion is high. ANN NEUROL 2023;94:727-735.


Asunto(s)
Acuaporina 4 , Inmunoglobulina G , Seroconversión , Adulto , Humanos , Adulto Joven , Autoanticuerpos , Estudios Retrospectivos
6.
Cereb Cortex ; 33(8): 4334-4349, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36066407

RESUMEN

Accumulating evidence indicates that the adult brain is capable of significant structural change following damage-a capacity once thought to be largely limited to developing brains. To date, most existing research on adult plasticity has focused on how exteroceptive sensorimotor networks compensate for damage to preserve function. Interoceptive networks-those that represent and process sensory information about the body's internal state-are now recognized to be critical for a wide range of physiological and psychological functions from basic energy regulation to maintaining a sense of self, but the extent to which these networks remain plastic in adulthood has not been established. In this report, we used detailed histological analyses to pinpoint precise changes to gray matter volume in the interoceptive-allostatic network in adult rhesus monkeys (Macaca mulatta) who received neurotoxic lesions of the anterior cingulate cortex (ACC) and neurologically intact control monkeys. Relative to controls, monkeys with ACC lesions had significant and selective unilateral expansion of the ventral anterior insula and significant relative bilateral expansion of the lateral nucleus of the amygdala. This work demonstrates the capacity for neuroplasticity in the interoceptive-allostatic network which, given that changes included expansion rather than atrophy, is likely to represent an adaptive response following damage.


Asunto(s)
Corteza Cerebral , Giro del Cíngulo , Animales , Giro del Cíngulo/fisiología , Corteza Cerebral/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Macaca mulatta
7.
J Neurol Neurosurg Psychiatry ; 94(9): 757-768, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221052

RESUMEN

OBJECTIVE: To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS: N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R2=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS: Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER: NCT02200770.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/sangre , Neuromielitis Óptica/tratamiento farmacológico , Biomarcadores , Anticuerpos Monoclonales Humanizados/uso terapéutico , Método Doble Ciego
8.
Mult Scler ; 29(8): 945-955, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37282545

RESUMEN

BACKGROUND: The N-MOmentum trial investigated safety and efficacy of inebilizumab in participants with neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE: Evaluate the attack identification process and adjudication committee (AC) performance in N-MOmentum. METHODS: Adults (n = 230) with NMOSD and Expanded Disability Status Scale score ⩽8 were randomized (3:1) to inebilizumab 300 mg or placebo. The randomized controlled period was 28 weeks or until adjudicated attack. Attacks were adjudicated according to 18 predefined criteria. Magnetic resonance imaging (MRI) and biomarker (serum glial fibrillary acidic protein [sGFAP]) analyses were performed. RESULTS: A total of 64 participant-reported neurological events occurred; 51 (80%) were investigator-determined to be attacks. The AC confirmed 43 of the investigator-determined attacks (84%). There was high inter- and intra-AC-member agreement. In 25/64 events (39%) and 14/43 AC-adjudicated attacks (33%), MRI was reviewed during adjudication. Retrospective analysis revealed new domain-specific T1 and T2 MRI lesions in 90% of adjudicated attacks. Increased mean sGFAP concentrations (>2-fold change) from baseline were observed in 56% of adjudicated attacks versus 14% of investigator-determined attacks rejected by the AC and 31% of participant-reported events determined not to be attacks. CONCLUSION: AC adjudication of NMOSD attacks according to predefined criteria appears robust. MRI lesion correlates and sGFAP elevations were found in most adjudicated attacks.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neuromielitis Óptica , Neuromielitis Óptica/tratamiento farmacológico , Humanos , Imagen por Resonancia Magnética , Biomarcadores/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Anticuerpos Monoclonales Humanizados/uso terapéutico , Estudios Retrospectivos
9.
Mult Scler ; 29(14): 1721-1735, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37830484

RESUMEN

BACKGROUND: Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein not previously described in the human central nervous system (CNS). OBJECTIVES: We determined MFAP4 CNS expression and measured cerebrospinal fluid (CSF) and serum levels. METHODS: Tissue was sampled at autopsy from patients with acute multiple sclerosis (MS) (n = 3), progressive MS (n = 3), neuromyelitis optica spectrum disorder (NMOSD) (n = 2), and controls (n = 9), including 6 healthy controls (HC). MFAP4 levels were measured in 152 patients: 49 MS, 62 NMOSD, 22 myelin oligodendrocyte glycoprotein-associated disease (MOGAD), and 19 isolated optic neuritis (ION). RESULTS: MFAP4 localized to meninges and vascular/perivascular spaces, intense in the optic nerve. At sites of active inflammation, MFAP4 reactivity was reduced in NMOSD and acute MS and less in progressive MS. CSF MFAP4 levels were reduced during relapse and at the onset of diseases (mean U/mL: MS 14.3, MOGAD 9.7, and ION 14.6 relative to HC 17.9. (p = 0.013, p = 0.000, and p = 0.019, respectively). Patients with acute ON (n = 68) had reduced CSF MFAP4 (mean U/mL: 14.5, p = 0.006). CSF MFAP4 levels correlated negatively with relapse severity (rho = -0.41, p = 0.017). CONCLUSION: MFAP4 immunoreactivity was reduced at sites of active inflammation. CSF levels of MFAP4 were reduced following relapse and may reflect disease activity.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica/líquido cefalorraquídeo , Sistema Nervioso Central , Inflamación , Autoanticuerpos , Acuaporina 4/líquido cefalorraquídeo , Proteínas Portadoras , Glicoproteínas , Proteínas de la Matriz Extracelular
10.
Brain ; 145(5): 1726-1742, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202467

RESUMEN

Neuromyelitis optica is a chronic neuroinflammatory disease, which primarily targets astrocytes and often results in severe axon injury of unknown mechanism. Neuromyelitis optica patients harbour autoantibodies against the astrocytic water channel protein, aquaporin-4 (AQP4-IgG), which induce complement-mediated astrocyte lysis and subsequent axon damage. Using spinal in vivo imaging in a mouse model of such astrocytopathic lesions, we explored the mechanism underlying neuromyelitis optica-related axon injury. Many axons showed a swift and morphologically distinct 'pearls-on-string' transformation also readily detectable in human neuromyelitis optica lesions, which especially affected small calibre axons independently of myelination. Functional imaging revealed that calcium homeostasis was initially preserved in this 'acute axonal beading' state, ruling out disruption of the axonal membrane, which sets this form of axon injury apart from previously described forms of traumatic and inflammatory axon damage. Morphological, pharmacological and genetic analyses showed that AQP4-IgG-induced axon injury involved osmotic stress and ionic overload, but does not appear to use canonical pathways of Wallerian-like degeneration. Subcellular analysis demonstrated remodelling of the axonal cytoskeleton in beaded axons, especially local loss of microtubules. Treatment with the microtubule stabilizer epothilone, a putative therapy approach for traumatic and degenerative axonopathies, prevented axonal beading, while destabilizing microtubules sensitized axons for beading. Our results reveal a distinct form of immune-mediated axon pathology in neuromyelitis optica that mechanistically differs from known cascades of post-traumatic and inflammatory axon loss, and suggest a new strategy for neuroprotection in neuromyelitis optica and related diseases.


Asunto(s)
Neuromielitis Óptica , Animales , Acuaporina 4 , Astrocitos/metabolismo , Autoanticuerpos/metabolismo , Axones/patología , Humanos , Inmunoglobulina G/metabolismo , Ratones , Neuromielitis Óptica/metabolismo
11.
J Neuroophthalmol ; 43(3): 323-329, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261907

RESUMEN

BACKGROUND: Repository corticotrophin injection (RCI, Acthar Gel) and intravenous methylprednisolone (IVMP) improve the rate but not the extent of visual recovery following acute optic neuritis. RCI has adrenal-stimulating and melanocortin receptor-stimulating properties that may endow it with unique anti-inflammatory properties relative to IVMP. METHODS: Individuals with acute optic neuritis of less than 2 weeks duration were prospectively enrolled and randomized 1:1 to receive either RCI or IVMP. Peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell plus inner plexiform layer thickness (GC + IPL) were serially evaluated by OCT. In addition, patient-reported outcomes (PROs) for changes in fatigue, mood, visual function, depression, and quality of life (QOL) were measured, and high and low contrast visual acuity were recorded. RESULTS: Thirty-seven subjects were enrolled (19 RCI; 18 IVMP); the average time from symptom to treatment was 8.8 days. At 6 months, there was no difference in the primary outcome: loss of average pRNFL thickness in the affected eye (RCI vs IVMP: -13.1 vs -11.7 µm, P = 0.88) 6 months after randomization. Additional outcomes also showed no difference between treatment groups: 6-month attenuation of GC + IPL thickness (RCI vs IVMP: -13.8 vs -12.0 µm, P = 0.58) and frequency of pRNFL swelling at 1 month (RCI vs IVMP: 63% vs 72%, P = 0.73) and 3 months (RCI vs IVMP: 26% vs 31%, P = 0.99). Both treatments resulted in improvement in visual function and PROs. CONCLUSIONS: Treatment of acute optic neuritis with RCI or IVMP produced no clinically meaningful differences in optic nerve structure or visual function.


Asunto(s)
Metilprednisolona , Neuritis Óptica , Humanos , Metilprednisolona/uso terapéutico , Calidad de Vida , Neuroprotección , Estudios Prospectivos , Neuritis Óptica/diagnóstico , Neuritis Óptica/tratamiento farmacológico , Hormona Adrenocorticotrópica , Tomografía de Coherencia Óptica/métodos
12.
Ann Neurol ; 89(5): 895-910, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33724534

RESUMEN

OBJECTIVE: Blood tests to monitor disease activity, attack severity, or treatment impact in neuromyelitis optica spectrum disorder (NMOSD) have not been developed. This study investigated the relationship between serum glial fibrillary acidic protein (sGFAP) concentration and NMOSD activity and assessed the impact of inebilizumab treatment. METHODS: N-MOmentum was a prospective, multicenter, double-blind, placebo-controlled, randomized clinical trial in adults with NMOSD. sGFAP levels were measured by single-molecule arrays (SIMOA) in 1,260 serial and attack-related samples from 215 N-MOmentum participants (92% aquaporin 4-immunoglobulin G-seropositive) and in control samples (from healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: At baseline, 62 participants (29%) exhibited high sGFAP concentrations (≥170 pg/ml; ≥2 standard deviations above healthy donor mean concentration) and were more likely to experience an adjudicated attack than participants with lower baseline concentrations (hazard ratio [95% confidence interval], 3.09 [1.6-6.1], p = 0.001). Median (interquartile range [IQR]) concentrations increased within 1 week of an attack (baseline: 168.4, IQR = 128.9-449.7 pg/ml; attack: 2,160.1, IQR = 302.7-9,455.0 pg/ml, p = 0.0015) and correlated with attack severity (median fold change from baseline [FC], minor attacks: 1.06, IQR = 0.9-7.4; major attacks: 34.32, IQR = 8.7-107.5, p = 0.023). This attack-related increase in sGFAP occurred primarily in placebo-treated participants (FC: 20.2, IQR = 4.4-98.3, p = 0.001) and was not observed in inebilizumab-treated participants (FC: 1.1, IQR = 0.8-24.6, p > 0.05). Five participants (28%) with elevated baseline sGFAP reported neurological symptoms leading to nonadjudicated attack assessments. INTERPRETATION: Serum GFAP may serve as a biomarker of NMOSD activity, attack risk, and treatment effects. ANN NEUROL 2021;89:895-910.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/sangre , Neuromielitis Óptica/sangre , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Biomarcadores/sangre , Método Doble Ciego , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/sangre , Neuromielitis Óptica/diagnóstico , Neuromielitis Óptica/tratamiento farmacológico , Estudios Prospectivos , Medición de Riesgo , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
13.
Nature ; 535(7612): 367-75, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27409810

RESUMEN

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Macaca mulatta/genética , Transcriptoma , Envejecimiento/genética , Animales , Trastorno del Espectro Autista/genética , Encéfalo/citología , Encéfalo/embriología , Adhesión Celular , Secuencia Conservada , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Factores de Riesgo , Esquizofrenia/genética , Análisis Espacio-Temporal , Especificidad de la Especie , Transcripción Genética/genética
14.
Hippocampus ; 31(8): 858-868, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33844366

RESUMEN

Behavioral inhibition is a temperamental disposition to react warily when confronted by unfamiliar people, objects, or events. Behaviorally inhibited children are at greater risk of developing anxiety disorders later in life. Previous studies reported that individuals with a history of childhood behavioral inhibition exhibit abnormal activity in the hippocampus and amygdala. However, few studies have investigated the structural differences that may underlie these functional abnormalities. In this exploratory study, we evaluated rhesus monkeys exhibiting a phenotype consistent with human behavioral inhibition. We performed quantitative neuroanatomical analyses that cannot be performed in humans including estimates of the volume and neuron number of distinct hippocampal regions and amygdala nuclei in behaviorally inhibited and control rhesus monkeys. Behaviorally inhibited monkeys had larger volumes of the rostral third of the hippocampal field CA3, smaller volumes of the rostral third of CA2, and smaller volumes of the accessory basal nucleus of the amygdala. Furthermore, behaviorally inhibited monkeys had fewer neurons in the rostral third of CA2. These structural differences may contribute to the functional abnormalities in the hippocampus and amygdala of behaviorally inhibited individuals. These structural findings in monkeys are consistent with a reduced modulation of amygdala activity via prefrontal cortex projections to the accessory basal nucleus. Given the putative roles of the amygdala in affective processing, CA3 in associative learning and CA2 in social memory, increased amygdala and CA3 activity, and diminished CA2 structure and function, may be associated with increased social anxiety and the heritability of behavioral inhibition. The findings from this exploratory study compel follow-up investigations with larger sample sizes and additional analyses to provide greater insight and more definitive answers regarding the neurobiological bases of behavioral inhibition.


Asunto(s)
Amígdala del Cerebelo , Hipocampo , Amígdala del Cerebelo/fisiología , Animales , Hipocampo/fisiología , Inhibición Psicológica , Macaca mulatta , Neuronas
15.
J Neuroinflammation ; 18(1): 121, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051804

RESUMEN

BACKGROUND: To investigate age-related severity, patterns of retinal structural damage, and functional visual recovery in pediatric and adult cohorts of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) optic neuritis (ON). METHODS: All MOGAD patients from the 5 participating centers were included. Patients with initial manifestation <18 years were included in the pediatric (MOGADped) cohort and patients with ≥18 years in the adult (MOGADadult) cohort. For patients with MOGAD ON, examinations at least ≥6 months after ON onset were included in the analyses. Using spectral domain optical coherence tomography (SD-OCT), we acquired peripapillary retinal nerve fiber layer thickness (pRNFL) and volumes of combined ganglion cell and inner plexiform layer (GCIPL). High- and 2.5% low-contrast visual acuity (HCVA, LCVA) and visual-evoked potentials (VEP) were obtained. RESULTS: Twenty MOGADped (10.3±3.7 years, 30 MOGAD ON eyes) and 39 MOGADadult (34.9±11.6 years, 42 MOGAD ON eyes) patients were included. The average number of ON episodes per ON eye was similar in both groups (1.8±1.3 and 2.0±1.7). In both pediatric and adult MOGAD, ON led to pronounced neuroaxonal retinal atrophy (pRNFL: 63.1±18.7 and 64.3±22.9 µm; GCIPL: 0.42±0.09 and 0.44±0.13 mm3, respectively) and moderate delay of the VEP latencies (117.9±10.7 and 118.0±14.5 ms). In contrast, visual acuity was substantially better in children (HCVA: 51.4±9.3 vs. 35.0±20.6 raw letters, p=0.001; LCVA: 22.8±14.6 vs. 13.5±16.4, p=0.028). Complete visual recovery (HCVA-logMAR 0.0) occurred in 73.3% of MOGADped and 31% MOGADadults ON eyes, while 3.3% and 31% demonstrated moderate to severe (logMAR > 0.5) visual impairment. Independent of retinal atrophy, age at ON onset significantly correlated with visual outcome. CONCLUSION: Pediatric MOGAD ON showed better visual recovery than adult MOGAD ON despite profound and almost identical neuroaxonal retinal atrophy. Age-related cortical neuroplasticity may account for the substantial discrepancy between structural changes and functional outcomes.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Neuritis Óptica/fisiopatología , Retina , Trastornos de la Visión/fisiopatología , Agudeza Visual , Adolescente , Adulto , Factores de Edad , Atrofia/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/clasificación , Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Potenciales Evocados Visuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glicoproteína Mielina-Oligodendrócito/inmunología , Neuritis Óptica/complicaciones , Neuritis Óptica/inmunología , Recuperación de la Función , Retina/diagnóstico por imagen , Retina/inmunología , Retina/fisiopatología , Degeneración Retiniana/inmunología , Degeneración Retiniana/fisiopatología , Tomografía de Coherencia Óptica , Trastornos de la Visión/inmunología , Agudeza Visual/inmunología
16.
Mult Scler ; 27(13): 2052-2061, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33538237

RESUMEN

BACKGROUND: In the N-MOmentum trial, the risk of an adjudicated neuromyelitis optica spectrum disorder (NMOSD) attack was significantly reduced with inebilizumab compared with placebo. OBJECTIVE: To demonstrate the robustness of this finding, using pre-specified sensitivity and subgroup analyses. METHODS: N-MOmentum is a prospective, randomized, placebo-controlled, double-masked trial of inebilizumab, an anti-CD19 monoclonal B-cell-depleting antibody, in patients with NMOSD. Pre-planned and post hoc analyses were performed to evaluate the primary endpoint across a range of attack definitions and demographic groups, as well as key secondary endpoints. RESULTS: In the N-MOmentum trial (ClinicalTrials.gov: NCT02200770), 174 participants received inebilizumab and 56 received placebo. Attack risk for inebilizumab versus placebo was consistently and significantly reduced, regardless of attack definition, type of attack, baseline disability, ethnicity, treatment history, or disease course (all with hazard ratios < 0.4 favoring inebilizumab, p < 0.05). Analyses of secondary endpoints showed similar trends. CONCLUSION: N-MOmentum demonstrated that inebilizumab provides a robust reduction in the risk of NMOSD attacks regardless of attack evaluation method, attack type, patient demographics, or previous therapy.The N-MOmentum study is registered at ClinicalTrials.gov: NCT2200770.


Asunto(s)
Neuromielitis Óptica , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Acuaporina 4 , Humanos , Neuromielitis Óptica/tratamiento farmacológico , Estudios Prospectivos
17.
Lancet ; 394(10206): 1352-1363, 2019 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-31495497

RESUMEN

BACKGROUND: No approved therapies exist for neuromyelitis optica spectrum disorder (NMOSD), a rare, relapsing, autoimmune, inflammatory disease of the CNS that causes blindness and paralysis. We aimed to assess the efficacy and safety of inebilizumab, an anti-CD19, B cell-depleting antibody, in reducing the risk of attacks and disability in NMOSD. METHODS: We did a multicentre, double-blind, randomised placebo-controlled phase 2/3 study at 99 outpatient specialty clinics or hospitals in 25 countries. Eligible participants were adults (≥18 years old) with a diagnosis of NMOSD, an Expanded Disability Status Scale score of 8·0 or less, and a history of at least one attack requiring rescue therapy in the year before screening or at least two attacks requiring rescue therapy in the 2 years before screening. Participants were randomly allocated (3:1) to 300 mg intravenous inebilizumab or placebo with a central interactive voice response system or interactive web response system and permuted block randomisation. Inebilizumab or placebo was administered on days 1 and 15. Participants, investigators, and all clinical staff were masked to the treatments, and inebilizumab and placebo were indistinguishable in appearance. The primary endpoint was time to onset of an NMOSD attack, as determined by the adjudication committee. Efficacy endpoints were assessed in all randomly allocated patients who received at least one dose of study intervention, and safety endpoints were assessed in the as-treated population. The study is registered with ClinicalTrials.gov, number NCT02200770. FINDINGS: Between Jan 6, 2015, and Sept 24, 2018, 230 participants were randomly assigned to treatment and dosed, with 174 participants receiving inebilizumab and 56 receiving placebo. The randomised controlled period was stopped before complete enrolment, as recommended by the independent data-monitoring committee, because of a clear demonstration of efficacy. 21 (12%) of 174 participants receiving inebilizumab had an attack versus 22 (39%) of 56 participants receiving placebo (hazard ratio 0·272 [95% CI 0·150-0·496]; p<0·0001). Adverse events occurred in 125 (72%) of 174 participants receiving inebilizumab and 41 (73%) of 56 participants receiving placebo. Serious adverse events occurred in eight (5%) of 174 participants receiving inebilizumab and five (9%) of 56 participants receiving placebo. INTERPRETATION: Compared with placebo, inebilizumab reduced the risk of an NMOSD attack. Inebilizumab has potential application as an evidence-based treatment for patients with NMOSD. FUNDING: MedImmune and Viela Bio.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neuromielitis Óptica/tratamiento farmacológico , Adolescente , Adulto , Anciano , Método Doble Ciego , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Neuromielitis Óptica/complicaciones , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto Joven
18.
Brain ; 142(6): 1598-1615, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31056665

RESUMEN

Neuromyelitis optica spectrum disorders (NMOSD) constitute rare autoimmune disorders of the CNS that are primarily characterized by severe inflammation of the spinal cord and optic nerve. Approximately 75% of NMOSD patients harbour circulating pathogenic autoantibodies targeting the aquaporin-4 water channel (AQP4). The source of these autoantibodies remains unclear, but parallels between NMOSD and other autoantibody-mediated diseases posit compromised B cell tolerance checkpoints as common underlying and contributing factors. Using a well established assay, we assessed tolerance fidelity by creating recombinant antibodies from B cell populations directly downstream of each checkpoint and testing them for polyreactivity and autoreactivity. We examined a total of 863 recombinant antibodies. Those derived from three anti-AQP4-IgG seropositive NMOSD patients (n = 130) were compared to 733 antibodies from 15 healthy donors. We found significantly higher frequencies of poly- and autoreactive new emigrant/transitional and mature naïve B cells in NMOSD patients compared to healthy donors (P-values < 0.003), thereby identifying defects in both central and peripheral B cell tolerance checkpoints in these patients. We next explored whether pathogenic NMOSD anti-AQP4 autoantibodies can originate from the pool of poly- and autoreactive clones that populate the naïve B cell compartment of NMOSD patients. Six human anti-AQP4 autoantibodies that acquired somatic mutations were reverted back to their unmutated germline precursors, which were tested for both binding to AQP4 and poly- or autoreactivity. While the affinity of mature autoantibodies against AQP4 ranged from modest to strong (Kd 15.2-559 nM), none of the germline revertants displayed any detectable binding to AQP4, revealing that somatic hypermutation is required for the generation of anti-AQP4 autoantibodies. However, two (33.3%) germline autoantibody revertants were polyreactive and four (66.7%) were autoreactive, suggesting that pathogenic anti-AQP4 autoantibodies can originate from the pool of autoreactive naïve B cells, which develops as a consequence of impaired early B cell tolerance checkpoints in NMOSD patients.


Asunto(s)
Acuaporina 4/genética , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Neuromielitis Óptica/genética , Adulto , Acuaporina 4/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuromielitis Óptica/metabolismo , Nervio Óptico/inmunología
19.
J Neuroophthalmol ; 40(3): 305-314, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32804456

RESUMEN

The initiation and continuation of immune-based therapies to treat and prevent complications of inflammatory neuro-ophthalmologic disorders during the 2019 novel coronavirus (COVID-19) pandemic is the subject of considerable debate. In each case, a treatment decision must be reached based on best clinical practices for the disorder, patient comorbidities, the current state of knowledge about the pathogenesis and infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the utilization of hospital and community resources. Unfortunately, the evidence needed to standardize the decision-making process for each neuro-ophthalmologic disorder is currently absent and is likely to require months or years to develop based on the accrual of robust international data sets. In this article, we review the current understanding of SARS-CoV-2 and COVID-19 complications to provide a framework for approaching the treatment of inflammatory neuro-ophthalmic disorders during the COVID-19 viral pandemic.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Oftalmopatías/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Pandemias , Neumonía Viral/epidemiología , COVID-19 , Infecciones por Coronavirus/inmunología , Arteritis de Células Gigantes/tratamiento farmacológico , Humanos , Inmunomodulación , Inmunosupresores/uso terapéutico , Miastenia Gravis/tratamiento farmacológico , Neuritis Óptica/tratamiento farmacológico , Neumonía Viral/inmunología , SARS-CoV-2
20.
Proc Natl Acad Sci U S A ; 113(51): 14781-14786, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27940915

RESUMEN

Aquaporin-4 (AQP4)-specific T cells are expanded in neuromyelitis optica (NMO) patients and exhibit Th17 polarization. However, their pathogenic role in CNS autoimmune inflammatory disease is unclear. Although multiple AQP4 T-cell epitopes have been identified in WT C57BL/6 mice, we observed that neither immunization with those determinants nor transfer of donor T cells targeting them caused CNS autoimmune disease in recipient mice. In contrast, robust proliferation was observed following immunization of AQP4-deficient (AQP4-/-) mice with AQP4 peptide (p) 135-153 or p201-220, peptides predicted to contain I-Ab-restricted T-cell epitopes but not identified in WT mice. In comparison with WT mice, AQP4-/- mice used unique T-cell receptor repertoires for recognition of these two AQP4 epitopes. Donor T cells specific for either determinant from AQP4-/-, but not WT, mice induced paralysis in recipient WT and B-cell-deficient mice. AQP4-specific Th17-polarized cells induced more severe disease than Th1-polarized cells. Clinical signs were associated with opticospinal infiltrates of T cells and monocytes. Fluorescent-labeled donor T cells were detected in CNS lesions. Visual system involvement was evident by changes in optical coherence tomography. Fine mapping of AQP4 p201-220 and p135-153 epitopes identified peptides within p201-220 but not p135-153, which induced clinical disease in 40% of WT mice by direct immunization. Our results provide a foundation to evaluate how AQP4-specific T cells contribute to AQP4-targeted CNS autoimmunity (ATCA) and suggest that pathogenic AQP4-specific T-cell responses are normally restrained by central tolerance, which may be relevant to understanding development of AQP4-reactive T cells in NMO.


Asunto(s)
Acuaporina 4/genética , Acuaporina 4/metabolismo , Autoantígenos/química , Epítopos de Linfocito T/inmunología , Neuromielitis Óptica/metabolismo , Linfocitos T/citología , Animales , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/metabolismo , Proliferación Celular , Sistema Nervioso Central , Mapeo Epitopo , Femenino , Citometría de Flujo , Tolerancia Inmunológica , Inmunoglobulina G/inmunología , Inflamación , Leucocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Bazo/citología , Células Th17/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA