Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 35(4): e21524, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742690

RESUMEN

Maternal pre-pregnancy obesity may have an impact on both maternal and fetal health. We examined the microbiome recovered from placentas in a multi-ethnic maternal pre-pregnant obesity cohort, through an optimized microbiome protocol to enrich low bacterial biomass samples. We found that the microbiomes recovered from the placentas of obese pre-pregnant mothers are less abundant and less diverse when compared to those from mothers of normal pre-pregnancy weight. Microbiome richness also decreases from the maternal side to the fetal side, demonstrating heterogeneity by geolocation within the placenta. In summary, our study shows that the microbiomes recovered from the placentas are associated with pre-pregnancy obesity. IMPORTANCE: Maternal pre-pregnancy obesity may have an impact on both maternal and fetal health. The placenta is an important organ at the interface of the mother and fetus, and supplies nutrients to the fetus. We report that the microbiomes enriched from the placentas of obese pre-pregnant mothers are less abundant and less diverse when compared to those from mothers of normal pre-pregnancy weight. More over, the microbiomes also vary by geolocation within the placenta.


Asunto(s)
Microbiota/fisiología , Obesidad Materna/metabolismo , Obesidad/complicaciones , Placenta/metabolismo , Adulto , Estudios de Cohortes , Femenino , Desarrollo Fetal/fisiología , Humanos , Embarazo , Complicaciones del Embarazo/etiología
2.
J Proteome Res ; 19(4): 1361-1374, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-31975597

RESUMEN

Maternal obesity has become a growing global health concern that may predispose the offspring to medical conditions later in life. However, the metabolic link between maternal prepregnant obesity and healthy offspring has not yet been fully elucidated. In this study, we conducted a case-control study using a coupled untargeted and targeted metabolomic approach from the newborn cord blood metabolomes associated with a matched maternal prepregnant obesity cohort of 28 cases and 29 controls. The subjects were recruited from multiethnic populations in Hawaii, including rarely reported Native Hawaiian and other Pacific Islanders (NHPI). We found that maternal obesity was the most important factor contributing to differences in cord blood metabolomics. Using an elastic net regularization-based logistic regression model, we identified 29 metabolites as potential early-life biomarkers manifesting intrauterine effect of maternal obesity, with accuracy as high as 0.947 after adjusting for clinical confounding (maternal and paternal age, ethnicity, parity, and gravidity). We validated the model results in a subsequent set of samples (N = 30) with an accuracy of 0.822. Among the metabolites, six metabolites (galactonic acid, butenylcarnitine, 2-hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl C40:3, 1,5-anhydrosorbitol, and phosphatidylcholine acyl-alkyl 40:3) were individually and significantly different between the maternal obese and normal-weight groups. Interestingly, hydroxy-3-methylbutyric acid showed significantly higher levels in cord blood from the NHPI group compared to that from Asian and Caucasian groups. In summary, significant associations were observed between maternal prepregnant obesity and offspring metabolomic alternation at birth, revealing the intergenerational impact of maternal obesity.


Asunto(s)
Sangre Fetal , Madres , Peso al Nacer , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Metabolómica , Obesidad , Embarazo
3.
medRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39108521

RESUMEN

Background: Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the transgenerational effect of maternal obesity, we conducted a multi-omics study, using DNA methylation and gene expression in the CD34+/CD38-/Lin- umbilical cord blood hematopoietic stem cells (uHSCs) and metabolomics of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (collected between 2016 and 2018). Results: Differential methylation (DM) analysis unveiled a global hypermethylation pattern in the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical confounders. Comprehensive functional analysis showed hypermethylation in promoters of genes involved in cell cycle, protein synthesis, immune signaling, and lipid metabolism. Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. Furthermore, the CpG sites associated with maternal obesity from these pathways also predicted highly accurately (average AUC = 0.8687) between cancer vs. normal tissues in 14 cancer types in The Cancer Genome Atlas (TCGA). Conclusions: This study revealed the significant correlation between pre-pregnancy maternal obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA methylation. Moreover, these maternal obesity epigenetic markers in uHSCs may predispose offspring to higher cancer risks.

4.
medRxiv ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693517

RESUMEN

Epigenome-wide DNA methylation analysis (EWAS) is an important approach to identify biomarkers for early disease detection and prognosis prediction, yet its results could be confounded by other factors such as cell-type heterogeneity and patient characteristics. In this study, we address the importance of confounding adjustment by examining DNA methylation patterns in cord blood exposed to severe preeclampsia (PE), a prevalent and potentially fatal pregnancy complication. Without such adjustment, a misleading global hypomethylation pattern is obtained. However, after adjusting cell type proportions and patient clinical characteristics, most of the so-called significant CpG methylation changes associated with severe PE disappear. Rather, the major effect of PE on cord blood is through the proportion changes in different cell types. These results are validated using a previously published cord blood DNA methylation dataset, where global hypomethylation pattern was also wrongfully obtained without confounding adjustment. Additionally, several cell types significantly change as gestation progress (eg. granulocyte, nRBC, CD4T, and B cells), further confirming the importance of cell type adjustment in EWAS study of cord blood tissues. Our study urges the community to perform confounding adjustments in EWAS studies, based on cell type heterogeneity and other patient characteristics.

5.
Aging (Albany NY) ; 15(2): 353-370, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575046

RESUMEN

Variations in telomere length (TL) have been associated with aging, stress, and many diseases. Placenta TL is an essential molecular component influencing the outcome of birth. Previous investigations into the relationship between placenta TL and preeclampsia (PE) have produced conflicting findings. We conducted a retrospective case-control analysis in this study to address the disparity. We used placenta samples from 224 births received from Hawaii Biorepository (HiBR) between 2006 and 2013, comprising 129 healthy full-term controls and 95 severe PE samples. The average absolute placental TL was calculated using the quantitative polymerase chain reaction (qPCR) technique. We utilized multiple linear regressions to associate placental TL with severe PE and other demographic, clinical and physiological data. The outcome demonstrates that the placental TL of severe PE cases did not significantly differ from that of healthy controls. Instead, there is a strong correlation between gestational age and placenta TL shortening. Placental TL also exhibits racial differences: (1) Latino moms' TL is significantly longer than non-Latino mothers' (p=0.009). (2) Caucasian patients with severe PE have shorter TL than non-Caucasian patients (p=0.0037). This work puts the long-standing question of whether severe PE influences placental TL to rest. Placental TL is not related to severe PE but is negatively associated with gestational age and is also affected by race.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Preeclampsia/genética , Estudios Retrospectivos , Edad Gestacional , Acortamiento del Telómero , Telómero
6.
Placenta ; 92: 17-27, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32056783

RESUMEN

Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.


Asunto(s)
Genómica , Preeclampsia/genética , Epigénesis Genética , Femenino , Humanos , Inhibinas/genética , Inhibinas/metabolismo , Preeclampsia/metabolismo , Embarazo , Proteoma , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA