Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2201076120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749728

RESUMEN

Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


Asunto(s)
Tortugas , Animales , Ecosistema , Dinámica Poblacional
2.
Oecologia ; 192(4): 939-951, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32270269

RESUMEN

For reptiles, the incubation environment experienced by embryos during development plays a major role in many biological processes. The unprecedented rate of climate change makes it critical to understand the effects that the incubation environment has on developing embryos, particularly in imperiled species such as chelonians. Consequently, a number of studies have focused on the effects of different environmental conditions on several developmental processes and hatchling phenotypic traits. In addition to the incubation environment, it is also essential to understand how parental contributions can influence hatchling quality. This is the first study that investigates the effects of parental origin and incubation conditions on sea turtle embryonic development and hatchling phenotype in nests incubating in the field (rather than under controlled laboratory conditions). Here, we used the loggerhead sea turtle (Caretta caretta) to investigate the effects of parental origin (clutch), incubation temperature, and the nest hydric environment on embryonic growth, incubation durations, hatching success, and hatchling phenotype. Our results show that nest moisture and temperature affect embryo mass towards the last third of development, with hatchling size positively correlated with nest moisture content, and maternal origin had a strong impact on hatching success and hatchling size regardless of the incubation conditions. The results from this experiment identify multiple factors that affect turtle embryonic development under field incubation conditions, a fundamental consideration when interpreting the potential impacts of climate change on reptilian development.


Asunto(s)
Tortugas , Animales , Cambio Climático , Fenotipo , Temperatura
3.
J Therm Biol ; 88: 102522, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32125998

RESUMEN

The continual development of ecological models and availability of high-resolution gridded climate surfaces have stimulated studies that link climate variables to functional traits of organisms. A primary constraint of these studies is the ability to reliably predict the microclimate that an organism experiences using macroscale climate inputs. This is particularly important in regions where access to empirical information is limited. Here, we contrast correlative models based on both ambient and sea surface temperatures to mechanistic modelling approaches to predict beach sand temperatures at depths relevant to sea turtle nesting. We show that mechanistic models are congruent with correlative models at predicting sand temperatures. We used these predictions to explore thermal variation across 46 mainland and island beaches that span the geographical range of sea turtle nesting in Western Australia. Using high resolution gridded climate surfaces and site-specific soil reflectance, we predict almost 9 °C variation in average annual temperatures between beaches, and nearly 10 °C variation in average temperatures during turtle nesting seasons. Validation of models demonstrated that predictions were typically within 2 °C of observations and, although most sites had high correlations (r2 > 0.7), predictive capacity varied between sites. An advantage of the mechanistic model demonstrated here is that it can be used to explore the impacts of climate change on sea turtle nesting beach temperatures as, unlike correlative models, it can be forced with novel combinations of environmental variables.


Asunto(s)
Microclima , Modelos Teóricos , Comportamiento de Nidificación , Temperatura , Tortugas/fisiología , Animales , Arena , Australia Occidental
4.
Mol Ecol ; 26(11): 2978-2992, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28267875

RESUMEN

Oviparous reptile embryos are expected to breach their critical thermal maxima if temperatures reach those predicted under current climate change models due to the lack of the maternal buffering processes and parental care. Heat-shock proteins (HSPs) are integral in the molecular response to thermal stress, and their expression is heritable, but the roles of other candidate families such as the heat-shock factors (HSFs) have not been determined in reptiles. Here, we subject embryonic sea turtles (Caretta caretta) to a biologically realistic thermal stress and employ de novo transcriptomic profiling of brain tissue to investigate the underlying molecular response. From a reference transcriptome of 302 293 transcripts, 179 were identified as differentially expressed between treatments. As anticipated, genes enriched in the heat-shock treatment were primarily associated with the Hsp families, or were genes whose products play similar protein editing and chaperone functions (e.g. bag3, MYOC and serpinh1). Unexpectedly, genes encoding the HSFs were not significantly upregulated under thermal stress, indicating their presence in unstressed cells in an inactive state. Genes that were downregulated under thermal stress were less well functionally defined but were associated with stress response, development and cellular organization, suggesting that developmental processes may be compromised at realistically high temperatures. These results confirm that genes from the Hsp families play vital roles in the thermal tolerance of developing reptile embryos and, in addition with a number of other genes, should be targets for evaluating the capacity of oviparous reptiles to respond adaptively to the effects of climate change.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Tortugas/embriología , Tortugas/genética , Animales , Cambio Climático , Genes del Desarrollo , Calor
5.
Mol Ecol Resour ; 22(1): 12-14, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34670016

RESUMEN

Genomic diversity and past population histories are key considerations in the fields of conservation and evolutionary biology. In this issue of Molecular Ecology Resources, Prasad et al. (Mol. Ecol. Resour., 2021) examine how the quality and phylogenetic divergence of reference genomes influences the outcomes of downstream analyses such as diversity and demographic history inference. Using the beluga whale and rowi kiwi as examples (Figure 1), they systematically estimate heterozygosity, runs of homozygosity (ROH), and demographic history (PSMC) using reference genomes of varying quality and phylogenetic divergence from the target species. They show that demographic history analyses are impacted by phylogenetic distance, although this is not pronounced until divergence exceeds 3% from the target species. Similarly, their results imply that heterozygosity estimates are dependent on phylogenetic distance and the method used to perform the estimates, and ROHs are potentially undetectable when a nonconspecific reference is used. This investigation into the role of divergence and quality of reference genomes highlights the impact and potential biases generated by genome selection on downstream analyses, and provides a possible alternative in cross-species scaffolding in instances where a conspecific reference genome is not available.


Asunto(s)
Evolución Biológica , Genoma , Genómica , Homocigoto , Filogenia
6.
Physiol Biochem Zool ; 94(6): 429-442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34581661

RESUMEN

AbstractNest microclimates influence embryonic development and survival in many lineages, including reptiles with temperature-dependent sex determination. These microclimates are dependent on physical drivers and biological processes, such as embryonic metabolism, that generate heat. The flatback turtle (Natator depressus) has among the largest hatchlings of the seven extant sea turtle species, making it an excellent candidate for quantifying the contribution of embryonic metabolism to the nest microclimate. Consequently, we measured embryonic metabolic rates, development rates, and the relationship between temperature and sex determination for a N. depressus population nesting at Cemetery Beach in Western Australia, a mainland beach characterized by high sand temperatures. Total oxygen consumed at 29.5°C during an average 52-d incubation period was 2,622 mL, total carbon dioxide produced was 1,886 mL, and estimated embryonic heat production reached 38 mW at 90% of development. Adjustment of metabolic rates to 32°C and 34°C increased peak heat production by 18% and 27%, respectively. The pivotal temperature (TPIV) producing an equal sex ratio was 30.3°C, mixed sexes were produced between 29.3°C and 31.2°C, and only females were produced above 31.2°C. The TPIV was similar (within 0.2°C) to that of an island rookery within the same genetic stock (North West Shelf), but the peak development rate (2.5% d-1) was estimated to be achieved at a temperature ~2.5°C higher (34.7°C) than the island rookery. Our results add to a growing consensus that thermal thresholds vary among sea turtle populations, even within the same genetic stock. Furthermore, we show that metabolic heat will have an appreciable impact on the nest microclimate, which has implications for embryonic survival and fitness under a future climate with warmer sand temperatures.


Asunto(s)
Condicionamiento Físico Animal , Tortugas , Animales , Australia , Femenino , Razón de Masculinidad , Temperatura
7.
J Morphol ; 282(2): 173-184, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33111991

RESUMEN

Variations in the number and arrangement of scutes often are used for species identification in hard-shelled sea turtles. Despite the conserved nature of scute arrangements, anomalous arrangements have been noted in the literature for over a century, with anomalies linked to sub-optimal environmental conditions in the nest during development. Long-held assumptions suggest that anomalous scute arrangements are indicative of underlying physiological or morphological anomalies, with presumed long-term survival costs to the individual. Here, we examined a 25-year photo database of two species of sea turtle (Caretta caretta and Chelonia mydas) captured incidentally and non-selectively on the eastern coast of Florida. Our results suggest that C. mydas is substantially more variable with respect to the arrangement of carapacial scutes, while C. caretta had a relatively higher proportion of individuals with anomalous plastron scute arrangements. We also show evidence that (a) the forms and patterns of anomalous scutes are stable throughout growth; (b) there is limited evidence for selection against non-modal arrangements in the size classes that were examined; and (c) that their frequency has remained stable in juvenile cohorts from 1994 until present. These findings indicate that there may not be a survival cost associated with anomalous scute arrangements once the turtles reach juvenile size classes, and that variation in scute arrangements within populations is relatively common.


Asunto(s)
Exoesqueleto/anatomía & histología , Tortugas/anatomía & histología , Animales , Bases de Datos como Asunto , Florida , Tamaño de los Órganos
8.
Integr Comp Biol ; 57(6): 1303-1311, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992039

RESUMEN

The turtle shell is often described as an evolutionary novelty that facilitated the radiation of the clade Testudines. The scutes, or keratinous plates, of the turtle shell are hypothesized to be patterned by reaction-diffusion dynamics, and this property of their development provides explanatory power to mechanisms of anomalous variation. A mathematical model of scute development predicts that anomalous variation in the phylogenetically stable pattern of scutes is achieved by environmental influence on the developmental program. We test this prediction with data on patterns of scute variation from natural nests and controlled incubation of sea turtle eggs in Florida and Western Australia. We find that high temperatures are sufficient to produce anomalous patterns in turtle scutes, and that this correlation is even stronger when conditions are dry. Furthermore, we find that the patterns of variation are not random; greater anomalous variation is found in the midline vertebral scutes and during a critical period of turtle development.


Asunto(s)
Exoesqueleto/embriología , Exoesqueleto/crecimiento & desarrollo , Evolución Biológica , Tortugas/embriología , Tortugas/crecimiento & desarrollo , Animales , Simulación por Computador , Florida , Óvulo/crecimiento & desarrollo , Temperatura , Australia Occidental
9.
Ecol Evol ; 3(7): 1856-63, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23919134

RESUMEN

Sperm conjugation occurs when two or more sperm physically unite for motility or transport through the female reproductive tract. In many muroid rodent species, sperm conjugates have been shown to form by a single, conspicuous apical hook located on the sperm head. These sperm "trains" have been reported to be highly variable in size and, despite all the heads pointing in roughly the same direction, exhibit a relatively disordered arrangement. In some species, sperm "trains" have been shown to enhance sperm swimming speed, and thus have been suggested to be advantageous in sperm competition. Here, we assessed the behavior of sperm in the sandy inland mouse (Pseudomys hermannsburgensis), a muroid rodent that bears sperm with three apical hooks. First, we accrued genetic evidence of multiple paternity within "wild" litters to unequivocally show that sperm competition does occur in this species. Following this we utilized both in vitro and in vivo methodologies to determine whether sandy inland mouse sperm conjugate to form motile trains. Our observations of in vitro preparations of active sperm revealed that sandy inland mouse sperm exhibit rapid, progressive motility as individual cells only. Similarly, histological sections of the reproductive tracts of mated females revealed no in vivo evidence of sperm conjugate formation. We conclude that the unique, three-hooked morphology of the sandy inland mouse sperm does not facilitate the formation of motile conjugates, and discuss our findings in relation to the different hypotheses for the evolution of the muroid rodent hook/s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA