Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(9): 096702, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721813

RESUMEN

We propose a simple family of valence-bond crystals as potential ground states of the S=1/2 and S=1 Heisenberg antiferromagnet on the pyrochlore lattice. Exponentially numerous in the linear size of the system, these can be visualized as hard-hexagon coverings, with each hexagon representing a resonating valence-bond ring. This ensemble spontaneously breaks rotation, inversion, and translation symmetries. A simple, yet accurate, variational wave function allows a precise determination of the energy, confirmed by the density matrix renormalization group and numerical linked cluster expansion, and extended by an analysis of excited states. The identification of the origin of the stability indicates applicability to a broad class of frustrated lattices, which we demonstrate for the checkerboard and ruby lattices. Our work suggests a perspective on such quantum magnets, in which unfrustrated motifs are effectively uncoupled by the frustration of their interactions.

2.
Phys Rev Lett ; 127(10): 107202, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533361

RESUMEN

Coulomb spin liquids are topological magnetic states obeying an emergent Gauss law. Little distinction has been made between different kinds of Coulomb liquids. Here we show how a series of distinct Coulomb liquids can be generated straightforwardly by varying the constraints on a classical spin system. This leads to pair creation, and coalescence, of topological defects of an underlying vector field. The latter makes higher-rank spin liquids, of recent interest in the context of fracton theories, with attendant multifold pinch points in the structure factor, appear naturally. New Coulomb liquids with an abundance of pinch points also arise. We thus establish a new and general route to uncovering exotic Coulomb liquids, via the manipulation of topological defects in momentum space.

3.
Phys Rev Lett ; 124(12): 127203, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281837

RESUMEN

Higher-rank generalizations of electrodynamics have recently attracted considerable attention because of their ability to host "fracton" excitations, with connections to both fracton topological order and gravity. However, the search for higher-rank gauge theories in experiment has been greatly hindered by the lack of materially relevant microscopic models. Here we show how a spin liquid described by rank-2 U(1) gauge theory can arise in a magnet on the breathing pyrochlore lattice. We identify Yb-based breathing pyrochlores as candidate systems, and make explicit predictions for how the rank-2 U(1) spin liquid would manifest itself in experiment.

4.
Phys Rev Lett ; 124(9): 097203, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202891

RESUMEN

The pyrochlore material Nd_{2}Zr_{2}O_{7} with an "all-in-all-out" (AIAO) magnetic order shows novel quantum moment fragmentation with gapped flat dynamical spin ice modes. The parametrized spin Hamiltonian with a dominant frustrated ferromagnetic transverse term reveals a proximity to a U(1) spin liquid. Here we study the magnetic excitations of Nd_{2}Zr_{2}O_{7} above the ordering temperature (T_{N}) using high-energy-resolution inelastic neutron scattering. We find strong spin ice correlations at zero energy with the disappearance of gapped magnon excitations of the AIAO order. It seems that the gap to the dynamical spin ice closes above T_{N} and the system enters a quantum spin ice state competing with and suppressing the AIAO order. Classical Monte Carlo simulations, molecular dynamics, and quantum boson calculations support the existence of a Coulombic phase above T_{N}. Our findings relate the magnetic ordering of Nd_{2}Zr_{2}O_{7} with the Higgs mechanism and provide explanations for several previously reported experimental features.

5.
Phys Rev Lett ; 121(3): 037203, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085790

RESUMEN

Quantum spin liquids (QSLs) are exotic phases of matter exhibiting long-range entanglement and supporting emergent gauge fields. A vigorous search for experimental realizations of these states has identified several materials with properties hinting at QSL physics. A key issue in understanding these QSL candidates is often the interplay of weak disorder of the crystal structure with the spin liquid state. It has recently been pointed out that in at least one important class of candidate QSLs-pyrochlore magnets based on non-Kramers ions such as Pr^{3+} or Tb^{3+}-structural disorder can actually promote a U(1) QSL ground state. Here we set this proposal on a quantitative footing by analyzing the stability of the QSL state in the minimal model for these systems: a random transverse field Ising model. We consider two kinds of instability, which are relevant in different limits of the phase diagram: condensation of spinons and confinement of the U(1) gauge fields. Having obtained stability bounds on the QSL state, we apply our results directly to the disordered candidate QSL Pr_{2}Zr_{2}O_{7}. We find that the available data for currently studied samples of Pr_{2}Zr_{2}O_{7} are most consistent with it a ground state outside the spin liquid regime, in a paramagnetic phase with quadrupole moments near saturation due to the influence of structural disorder.

6.
Phys Rev Lett ; 121(6): 067201, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30141668

RESUMEN

Quantum spin ice materials, pyrochlore magnets with competing Ising and transverse exchange interactions, have been widely discussed as candidates for a quantum spin-liquid ground state. Here, motivated by quantum chemical calculations for Pr pyrochlores, we present the results of a study for frustrated transverse exchange. Using a combination of variational calculations, exact diagonalization, numerical linked-cluster and series expansions, we find that the previously studied U(1) quantum spin liquid, in its π-flux phase, transforms into a nematic quantum spin liquid at a high-symmetry, SU(2) point.

7.
Phys Rev Lett ; 115(26): 267208, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26765024

RESUMEN

If magnetic frustration is most commonly known for undermining long-range order, as famously illustrated by spin liquids, the ability of matter to develop new collective mechanisms in order to fight frustration is perhaps no less fascinating, providing an avenue for the exploration and discovery of unconventional behaviors. Here, we study a realistic minimal model where a number of such mechanisms converge, which, incidentally, pertain to the perplexing quantum spin ice candidate Yb(2)Ti(2)O(7). Specifically, we explain how thermal and quantum fluctuations, optimized by order-by-disorder selection, conspire to expand the stability region of a degenerate continuous U(1) manifold against the classical splayed ferromagnetic ground state that is displayed by the sister compound Yb(2)Ti(2)O(7). The resulting competition gives rise to multiple phase transitions, in striking similitude with recent experiments on Yb(2)Ti(2)O(7) [Lhotel et al., Phys. Rev. B 89, 224419 (2014)]. By combining a gamut of numerical techniques, we obtain compelling evidence that such multiphase competition is a natural engine for the substantial sample-to-sample variability observed in Yb(2)Ti(2)O(7) and is the missing key to ultimately understand the intrinsic properties of this material. As a corollary, our work offers a pertinent illustration of the influence of chemical pressure in rare-earth pyrochlores.

8.
Nat Commun ; 7: 10297, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26796866

RESUMEN

Despite its deceptive simplicity, few concepts have more fundamental implications than chirality, from the therapeutic activity of drugs to the fundamental forces of nature. In magnetic materials, chirality gives rise to unconventional phenomena such as the anomalous Hall effect and multiferroicity, taking an enhanced flavour in the so-called spin-liquid phases where magnetic disorder prevails. Kagome systems sit at the crossroad of these ideas. Motivated by the recent synthesis of rare-earth kagome materials and the progresses in optical-lattice experiments, we bring together an entire network of spin liquids with anisotropic and Dzyaloshinskii-Moriya interactions. This network revolves around the Ising antiferromagnet and ends on (ferromagnetic) chiral spin liquids with spontaneously broken time-reversal symmetry. As for the celebrated Heisenberg antiferromagnet, it now belongs to a triad of equivalently disordered phases. The present work provides a unifying theory of kagome spin liquids with time-reversal invariant nearest-neighbour Hamiltonians.

9.
Nat Commun ; 7: 11572, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225400

RESUMEN

The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA