Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 83, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38189952

RESUMEN

Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.


Asunto(s)
Lactosa , Azúcares , Humanos , Filogenia , Transporte Biológico , Proteínas de Transporte de Membrana/genética
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34168079

RESUMEN

Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest.


Asunto(s)
Proteínas F-Box/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Ingeniería Genética , Neurospora crassa/enzimología , Neurospora crassa/genética , Amilasas/metabolismo , Carbono/farmacología , Represión Catabólica , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Nitrógeno/metabolismo , Fenotipo , Secuenciación Completa del Genoma , Xilosa/metabolismo , beta-Fructofuranosidasa/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(11): 6003-6013, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32111691

RESUMEN

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Pectinas/metabolismo , Polisacáridos/metabolismo , Factores de Transcripción/metabolismo , Biocombustibles , Biomasa , Represión Catabólica , Pared Celular/química , Regulación Fúngica de la Expresión Génica , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Neurospora crassa/metabolismo , RNA-Seq
4.
PLoS Genet ; 15(11): e1008510, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31765390

RESUMEN

Cellulolytic fungi have evolved a complex regulatory network to maintain the precise balance of nutrients required for growth and hydrolytic enzyme production. When fungi are exposed to cellulose, the transcript levels of cellulase genes rapidly increase and then decline. However, the mechanisms underlying this bell-shaped expression pattern are unclear. We systematically screened a protein kinase deletion set in the filamentous fungus Neurospora crassa to search for mutants exhibiting aberrant expression patterns of cellulase genes. We observed that the loss of stk-12 (NCU07378) caused a dramatic increase in cellulase production and an extended period of high transcript abundance of major cellulase genes. These results suggested that stk-12 plays a critical role as a brake to turn down the transcription of cellulase genes to repress the overexpression of hydrolytic enzymes and prevent energy wastage. Transcriptional profiling analyses revealed that cellulase gene expression levels were maintained at high levels for 56 h in the Δstk-12 mutant, compared to only 8 h in the wild-type (WT) strain. After growth on cellulose for 3 days, the transcript levels of cellulase genes in the Δstk-12 mutant were 3.3-fold over WT, and clr-2 (encoding a transcriptional activator) was up-regulated in Δstk-12 while res-1 and rca-1 (encoding two cellulase repressors) were down-regulated. Consequently, total cellulase production in the Δstk-12 mutant was 7-fold higher than in the WT. These results strongly suggest that stk-12 deletion results in dysregulation of the cellulase expression machinery. Further analyses showed that STK-12 directly targets IGO-1 to regulate cellulase production. The TORC1 pathway promoted cellulase production, at least partly, by inhibiting STK-12 function, and STK-12 and CRE-1 functioned in parallel pathways to repress cellulase gene expression. Our results clarify how cellulase genes are repressed at the transcriptional level during cellulose induction, and highlight a new strategy to improve industrial fungal strains.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Factores de Transcripción/genética , Celulosa/genética , Regulación Fúngica de la Expresión Génica/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neurospora crassa/enzimología , Neurospora crassa/genética
5.
Proc Natl Acad Sci U S A ; 115(17): 4447-4452, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632193

RESUMEN

Animal-microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by (i) a higher biomass on medium containing ethanol, (ii) strong alcohol dehydrogenase enzymatic activity, and (iii) a competitive advantage over weedy fungal garden competitors (Aspergillus, Penicillium) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses.


Asunto(s)
Aspergillus/fisiología , Escarabajos/microbiología , Etanol/farmacología , Penicillium/fisiología , Simbiosis/efectos de los fármacos , Animales , Etanol/metabolismo , Simbiosis/fisiología
6.
New Phytol ; 227(1): 244-259, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155672

RESUMEN

Volatile organic compounds (VOCs) play vital roles in the interaction of fungi with plants and other organisms. A systematic study of the global fungal VOC profiles is still lacking, though it is a prerequisite for elucidating the mechanisms of VOC-mediated interactions. Here we present a versatile system enabling a high-throughput screening of fungal VOCs under controlled temperature. In a proof-of-principle experiment, we characterized the volatile metabolic fingerprints of four Trichoderma spp. over a 48 h growth period. The developed platform allows automated and fast detection of VOCs from up to 14 simultaneously growing fungal cultures in real time. The comprehensive analysis of fungal odors is achieved by employing proton transfer reaction-time of flight-MS and GC-MS. The data-mining strategy based on multivariate data analysis and machine learning allows the volatile metabolic fingerprints to be uncovered. Our data revealed dynamic, development-dependent and extremely species-specific VOC profiles from the biocontrol genus Trichoderma. The two mass spectrometric approaches were highly complementary to each other, together revealing a novel, dynamic view to the fungal VOC release. This analytical system could be used for VOC-based chemotyping of diverse small organisms, or more generally, for any in vivo and in vitro real-time headspace analysis.


Asunto(s)
Trichoderma , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis
7.
Bioprocess Biosyst Eng ; 43(9): 1549-1560, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32328731

RESUMEN

Pectinaceous agricultural residues rich in D-galacturonic acid (D-GalA), such as sugar beet pulp, are considered as promising feedstocks for waste-to-value conversions. Aspergillus niger is known for its strong pectinolytic activity. However, while specialized strains for production of citric acid or proteins are well characterized, this is not the case for the production of pectinases. We, therefore, systematically compared the pectinolytic capabilities of six A. niger strains (ATCC 1015, ATCC 11414, NRRL 3122, CBS 513.88, NRRL 3, and N402) using controlled batch cultivations in stirred-tank bioreactors. A. niger ATCC 11414 showed the highest polygalacturonase activity, specific protein secretion, and a suitable morphology. Furthermore, D-GalA release from sugar beet pulp was 75% higher compared to the standard lab strain A. niger N402. Our study, therefore, presents a robust initial strain selection to guide future process improvement of D-GalA production from agricultural residues and identifies a high-performance base strain for further genetic optimizations.


Asunto(s)
Aspergillus niger/enzimología , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo , Poligalacturonasa/metabolismo , Beta vulgaris/química , Pectinas/química
8.
Appl Microbiol Biotechnol ; 103(6): 2507-2524, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30694345

RESUMEN

Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.


Asunto(s)
Fermentación , Hongos/enzimología , Microbiología Industrial , Pectinas/metabolismo , Poligalacturonasa/genética , Agricultura/métodos , Pared Celular , Hongos/patogenicidad , Enfermedades de las Plantas/microbiología , Poligalacturonasa/metabolismo
9.
Anal Bioanal Chem ; 409(30): 7169-7181, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29026979

RESUMEN

The rising importance of accurately detecting oligosaccharides in biomass hydrolyzates or as ingredients in food, such as in beverages and infant milk products, demands for the availability of tools to sensitively analyze the broad range of available oligosaccharides. Over the last decades, HPAEC-PAD has been developed into one of the major technologies for this task and represents a popular alternative to state-of-the-art LC-MS oligosaccharide analysis. This work presents the first comprehensive study which gives an overview of the separation of 38 analytes as well as enzymatic hydrolyzates of six different polysaccharides focusing on oligosaccharides. The high sensitivity of the PAD comes at cost of its stability due to recession of the gold electrode. By an in-depth analysis of the sensitivity drop over time for 35 analytes, including xylo- (XOS), arabinoxylo- (AXOS), laminari- (LOS), manno- (MOS), glucomanno- (GMOS), and cellooligosaccharides (COS), we developed an analyte-specific one-phase decay model for this effect over time. Using this model resulted in significantly improved data normalization when using an internal standard. Our results thereby allow a quantification approach which takes the inevitable and analyte-specific PAD response drop into account. Graphical abstract HPAEC-PAD analysis of oligosaccharides and determination of PAD response drop leading to an improved data normalization.


Asunto(s)
Cromatografía/métodos , Oligosacáridos/química , Fraccionamiento Químico , Sensibilidad y Especificidad
10.
Mol Microbiol ; 91(2): 275-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24224966

RESUMEN

Filamentous fungi are powerful producers of hydrolytic enzymes for the deconstruction of plant cell wall polysaccharides. However, the central question of how these sugars are perceived in the context of the complex cell wall matrix remains largely elusive. To address this question in a systematic fashion we performed an extensive comparative systems analysis of how the model filamentous fungus Neurospora crassa responds to the three main cell wall polysaccharides: pectin, hemicellulose and cellulose. We found the pectic response to be largely independent of the cellulolytic one with some overlap to hemicellulose, and in its extent surprisingly high, suggesting advantages for the fungus beyond being a mere carbon source. Our approach furthermore allowed us to identify carbon source-specific adaptations, such as the induction of the unfolded protein response on cellulose, and a commonly induced set of 29 genes likely involved in carbon scouting. Moreover, by hierarchical clustering we generated a coexpression matrix useful for the discovery of new components involved in polysaccharide utilization. This is exemplified by the identification of lat-1, which we demonstrate to encode for the physiologically relevant arabinose transporter in Neurospora. The analyses presented here are an important step towards understanding fungal degradation processes of complex biomass.


Asunto(s)
Adaptación Fisiológica , Carbono/metabolismo , Pared Celular/metabolismo , Neurospora crassa/metabolismo , Polisacáridos/metabolismo , Arabinosa/metabolismo , Biomasa , Celulosa/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Neurospora crassa/genética , Pectinas/metabolismo , Desplegamiento Proteico , Proteómica
11.
Appl Environ Microbiol ; 81(12): 4062-70, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25841015

RESUMEN

Limited uptake is one of the bottlenecks for l-arabinose fermentation from lignocellulosic hydrolysates in engineered Saccharomyces cerevisiae. This study characterized two novel l-arabinose transporters, LAT-1 from Neurospora crassa and MtLAT-1 from Myceliophthora thermophila. Although the two proteins share high identity (about 83%), they display different substrate specificities. Sugar transport assays using the S. cerevisiae strain EBY.VW4000 indicated that LAT-1 accepts a broad substrate spectrum. In contrast, MtLAT-1 appeared much more specific for l-arabinose. Determination of the kinetic properties of both transporters revealed that the Km values of LAT-1 and MtLAT-1 for l-arabinose were 58.12 ± 4.06 mM and 29.39 ± 3.60 mM, respectively, with corresponding Vmax values of 116.7 ± 3.0 mmol/h/g dry cell weight (DCW) and 10.29 ± 0.35 mmol/h/g DCW, respectively. In addition, both transporters were found to use a proton-coupled symport mechanism and showed only partial inhibition by d-glucose during l-arabinose uptake. Moreover, LAT-1 and MtLAT-1 were expressed in the S. cerevisiae strain BSW2AP containing an l-arabinose metabolic pathway. Both recombinant strains exhibited much faster l-arabinose utilization, greater biomass accumulation, and higher ethanol production than the control strain. In conclusion, because of higher maximum velocities and reduced inhibition by d-glucose, the genes for the two characterized transporters are promising targets for improved l-arabinose utilization and fermentation in S. cerevisiae.


Asunto(s)
Arabinosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Neurospora crassa/genética , Pentosas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sordariales/genética , Transporte Biológico , Biomasa , Etanol/metabolismo , Fermentación/genética , Ingeniería Genética , Glucosa/metabolismo , Cinética , Redes y Vías Metabólicas , Proteínas de Transporte de Monosacáridos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Sordariales/metabolismo , Xilosa/metabolismo
12.
AMB Express ; 14(1): 4, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180602

RESUMEN

Classical fungal mutant strains obtained by mutagenesis have helped to elucidate fundamental metabolic pathways in the past. In the filamentous fungus Neurospora crassa, the gluc-1 strain was isolated long ago and characterized by its low level of ß-glucosidase activity, which is essential for the degradation of cellulose, the most abundant biopolymer on Earth and the main polymeric component of the plant cell wall. Based on genomic resequencing, we hypothesized that the causative mutation resides in the ß-glucosidase gene gh3-3 (bgl6, NCU08755). In this work, growth patterns, enzymatic activities and sugar utilization rates were analyzed in several mutant and overexpression strains related to gluc-1 and gh3-3. In addition, different mutants affected in the degradation and transport of cellobiose were analyzed. While overexpression of gh3-3 led to the recovery of ß-glucosidase activity in the gluc-1 mutant, as well as normal utilization of cellobiose, the full gene deletion strain Δgh3-3 was found to behave differently than gluc-1 with lower secreted ß-glucosidase activity, indicating a dominant role of the amino acid substitution in the point mutated gh3-3 gene of gluc-1. Our results furthermore confirm that GH3-3 is the major extracellular ß-glucosidase in N. crassa and demonstrate that the two cellodextrin transporters CDT-1 and CDT-2 are essential for growth on cellobiose when the three main N. crassa ß-glucosidases are absent. Overall, these findings provide valuable insight into the mechanisms of cellulose utilization in filamentous fungi, being an essential step in the efficient production of biorefinable sugars from agricultural and forestry plant biomass.

13.
Plant J ; 70(5): 809-17, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22300243

RESUMEN

Arabidopsis thaliana contains two photosynthetically competent chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F(1) (fnr1 × fnr2) and F(2) (fnr1 fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1 × fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment-protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem II (PSII) electron transport was lower, non-photochemical quenching (NPQ) was higher and the rate of P700(+) re-reduction was faster in the mutant plants. The slight over-reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de-epoxidation state of xanthophylls, as well as the content of α-tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1 fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1 fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Ferredoxina-NADP Reductasa/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/fisiología , Cruzamientos Genéticos , Transporte de Electrón , Ferredoxina-NADP Reductasa/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Estrés Oxidativo , Fenotipo , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Sacarosa , Tilacoides/genética , Tilacoides/metabolismo , Xantófilas/genética , Xantófilas/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(45): 19260-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974920

RESUMEN

Ferredoxin:NADPH oxidoreductase (FNR) is a key enzyme of photosynthetic electron transport required for generation of reduction equivalents. Recently, two proteins were found to be involved in membrane-anchoring of FNR by specific interaction via a conserved Ser/Pro-rich motif: Tic62 and Trol. Our crystallographic study reveals that the FNR-binding motif, which forms a polyproline type II helix, induces self-assembly of two FNR monomers into a back-to-back dimer. Because binding occurs opposite to the FNR active sites, its activity is not affected by the interaction. Surface plasmon resonance analyses disclose a high affinity of FNR to the binding motif, which is strongly increased under acidic conditions. The pH of the chloroplast stroma changes dependent on the light conditions from neutral to slightly acidic in complete darkness or to alkaline at saturating light conditions. Recruiting of FNR to the thylakoids could therefore represent a regulatory mechanism to adapt FNR availability/activity to photosynthetic electron flow.


Asunto(s)
Ferredoxina-NADP Reductasa/química , Péptidos/metabolismo , Proteínas de Plantas/química , Tilacoides/enzimología , Cloroplastos/enzimología , Cloroplastos/metabolismo , Cristalografía por Rayos X , Ferredoxina-NADP Reductasa/metabolismo , Concentración de Iones de Hidrógeno , Luz , Pisum sativum/enzimología , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Tilacoides/metabolismo
15.
Fungal Biol Biotechnol ; 9(1): 10, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606847

RESUMEN

BACKGROUND: The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS: The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca2+, Mg2+, K+, as well as a complete replacement of Fe2+, Mn2+, Zn2+ by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS: PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications.

16.
BMC Plant Biol ; 11: 133, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21961525

RESUMEN

BACKGROUND: The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. RESULTS: We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. CONCLUSIONS: The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Liposomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Pisum sativum/genética , Pisum sativum/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , ARN de Planta/genética
17.
Front Fungal Biol ; 2: 701579, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744145

RESUMEN

Brown rot fungi degrade wood in a two-step process in which enzymatic hydrolysis is preceded by an oxidative degradation phase. While a detailed understanding of the molecular processes during brown rot decay is mandatory for being able to better protect wooden products from this type of degradation, the underlying mechanisms are still not fully understood. This is particularly true for wood that has been treated to increase its resistance against rot. In the present study, the two degradation phases were separated to study the impact of wood acetylation on the behavior of three brown rot fungi commonly used in wood durability testing. Transcriptomic data from two strains of Rhodonia placenta (FPRL280 and MAD-698) and Gloeophyllum trabeum were recorded to elucidate differences between the respective decay strategies. Clear differences were found between the two decay stages in all fungi. Moreover, strategies varied not only between species but also between the two strains of the same species. The responses to wood acetylation showed that decay is generally delayed and that parts of the process are attenuated. By hierarchical clustering, we could localize several transcription factors within gene clusters that were heavily affected by acetylation, especially in G. trabeum. The results suggest that regulatory circuits evolve rapidly and are probably the major cause behind the different decay strategies as observed even between the two strains of R. placenta. Identifying key genes in these processes can help in decay detection and identification of the fungi by biomarker selection, and also be informative for other fields, such as fiber modification by biocatalysts and the generation of biochemical platform chemicals for biorefinery applications.

18.
Commun Biol ; 4(1): 673, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083721

RESUMEN

Fungi produce a wide variety of volatile organic compounds (VOCs), which play central roles in the initiation and regulation of fungal interactions. Here we introduce a global overview of fungal VOC patterns and chemical diversity across phylogenetic clades and trophic modes. The analysis is based on measurements of comprehensive VOC profiles of forty-three fungal species. Our data show that the VOC patterns can describe the phyla and the trophic mode of fungi. We show different levels of phenotypic integration (PI) for different chemical classes of VOCs within distinct functional guilds. Further computational analyses reveal that distinct VOC patterns can predict trophic modes, (non)symbiotic lifestyle, substrate-use and host-type of fungi. Thus, depending on trophic mode, either individual VOCs or more complex VOC patterns (i.e., chemical communication displays) may be ecologically important. Present results stress the ecological importance of VOCs and serve as prerequisite for more comprehensive VOCs-involving ecological studies.


Asunto(s)
Hongos/metabolismo , Interacciones Huésped-Patógeno , Simbiosis , Compuestos Orgánicos Volátiles/análisis , Hongos/clasificación , Hongos/genética , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Filogenia , Raíces de Plantas/microbiología , Brotes de la Planta/microbiología , Especificidad de la Especie , Compuestos Orgánicos Volátiles/química
19.
Sci Rep ; 10(1): 19021, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149263

RESUMEN

D-Galacturonic acid (GalA) is the major constituent of pectin-rich biomass, an abundant and underutilized agricultural byproduct. By one reductive step catalyzed by GalA reductases, GalA is converted to the polyhydroxy acid L-galactonate (GalOA), the first intermediate of the fungal GalA catabolic pathway, which also has interesting properties for potential applications as an additive to nutrients and cosmetics. Previous attempts to establish the production of GalOA or the full GalA catabolic pathway in Saccharomyces cerevisiae proved challenging, presumably due to the inefficient supply of NADPH, the preferred cofactor of GalA reductases. Here, we tested this hypothesis by coupling the reduction of GalA to the oxidation of the sugar alcohol sorbitol that has a higher reduction state compared to glucose and thereby yields the necessary redox cofactors. By choosing a suitable sorbitol dehydrogenase, we designed yeast strains in which the sorbitol metabolism yields a "surplus" of either NADPH or NADH. By biotransformation experiments in controlled bioreactors, we demonstrate a nearly complete conversion of consumed GalA into GalOA and a highly efficient utilization of the co-substrate sorbitol in providing NADPH. Furthermore, we performed structure-guided mutagenesis of GalA reductases to change their cofactor preference from NADPH towards NADH and demonstrated their functionality by the production of GalOA in combination with the NADH-yielding sorbitol metabolism. Moreover, the engineered enzymes enabled a doubling of GalOA yields when glucose was used as a co-substrate. This significantly expands the possibilities for metabolic engineering of GalOA production and valorization of pectin-rich biomass in general.


Asunto(s)
Ácidos Hexurónicos/metabolismo , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/metabolismo , NAD/metabolismo , Saccharomyces cerevisiae/metabolismo , Biotransformación , Fermentación , Oxidación-Reducción
20.
Front Microbiol ; 11: 1338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625194

RESUMEN

Brown rot fungi, such as Rhodonia placenta (previously Postia placenta), occur naturally in northern coniferous forest ecosystems and are known to be the most destructive group of decay fungi, degrading wood faster and more effectively than other wood-degrading organisms. It has been shown that brown rot fungi not only rely on enzymatic degradation of lignocellulose, but also use low molecular weight oxidative agents in a non-enzymatic degradation step prior to the enzymatic degradation. R. placenta is used in standardized decay tests in both Europe and North America. However, two different strains are employed (FPRL280 and MAD-698, respectively) for which differences in colonization-rate, mass loss, as well as in gene expression have been observed, limiting the comparability of results. To elucidate the divergence between both strains, we investigated the phenotypes in more detail and compared their genomes. Significant phenotypic differences were found between the two strains, and no fusion was possible. MAD-698 degraded scots pine more aggressively, had a more constant growth rate and produced mycelia faster than FPRL280. After sequencing the genome of FPRL280 and comparing it with the published MAD-698 genome we found 660,566 SNPs, resulting in 98.4% genome identity. Specific analysis of the carbohydrate-active enzymes, encoded by the genome (CAZome) identified differences in many families related to plant biomass degradation, including SNPs, indels, gaps or insertions within structural domains. Four genes belonging to the AA3_2 family could not be found in or amplified from FPRL280 gDNA, suggesting the absence of these genes. Differences in other CAZy encoding genes that could potentially affect the lignocellulolytic activity of the strains were also predicted by comparison of genome assemblies (e.g., GH2, GH3, GH5, GH10, GH16, GH78, GT2, GT15, and CBM13). Overall, these mutations help to explain the phenotypic differences observed between both strains as they could interfere with the enzymatic activities, substrate binding ability or protein folding. The investigation of the molecular reasons that make these two strains distinct contributes to the understanding of the development of this important brown rot reference species and will help to put the data obtained from standardized decay tests across the globe into a better biological context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA