RESUMEN
Outcome of TGFß1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFß1 signaling, we dissected the modifier locus Tgfbm3, on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b(C57) haplotype suppresses prenatal lethality of Tgfb1(-/-) embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFßRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFßRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFßR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFß signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFß/bone morphogenetic protein receptor genes, ENG, encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFß-regulated vascular disease.
Asunto(s)
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Vasos Sanguíneos/patología , Regulación de la Expresión Génica/fisiología , Variación Genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína ADAM17 , Animales , Regulación de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Luciferasas , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/genéticaRESUMEN
BACKGROUND: The α2-adrenoceptor agonist xylazine as an anesthetic has been widely used either alone or in combination with other anesthetics, such as ketamine, in veterinary clinic and research. In the last decade xylazine has been used in drug abusers in certain geographic area. This study investigated the effects of xylazine on blood glucose level and insulin secretion in normoglycemic and insulin-dependent diabetic monkeys. METHODS: Both adult cynomolgus (n = 10) and rhesus (n = 8) monkeys with either sex were used in the study. Xylazine (1-2 mg/kg) was administrated intramuscularly. Blood glucose, insulin, glucagon and glucagon-like peptide 1 in overnight-fasted monkeys were measured immediately before and after xylazine administration. The hyperinsulinemic-euglycemic clamp method was used in the study for assessing the potential mechanism of xylazine-induced hyperglycemia. RESULTS: Xylazine administration increased the blood glucose levels from 58 ± 3 to 108 ± 12 mg/dL in normoglycemic (n = 5, p < 0.01) and from 158 ± 9 to 221 ± 13 mg/dL in insulin-dependent diabetic (n = 5, p < 0.01) monkeys and was not accompanied by any significant changes in blood insulin, glucagon, and glucagon-like peptide-1. Xylazine-induced hyperglycemia occurred within 10 min and reached the peak at 35 min after injection. Xylazine-induced hyperglycemia declined slowly in diabetic animals. The α2-adrenoceptor antagonist yohimbine was administrated to bring down the elevated glucose level to the pre-xylazine one in 4 out of 5 diabetic animals. To assess the potential mechanism, the hyperinsulinemic-euglycemic clamp was used to maintain a nearly saturated and constant insulin level for minimizing endogenous insulin glucoregulation. Xylazine administration decreased glucose infusion rate, from 14.3 ± 1.4 to 8.3 ± 0.8 mg/min/kg (n = 6, p < 0.01) in normoglycemic rhesus monkeys, which indicates that the glucose metabolic rate (M rate) was decreased by xylazine. In addition, after clamping blood glucose level in a range of 55 to 75 mg/dL for 40 min with constant glucose infusion, xylazine administration still increased blood glucose concentration. CONCLUSIONS: We conclude that xylazine administration induces hyperglycemia in normoglycemic and insulin-dependent diabetic monkeys potentially via stimulation of α2-adrenoceptors and then reducing tissue sensitivity to insulin and glucose uptake.
RESUMEN
The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass index (BMI) in the European population. With the input of CNR1 exons and 3' and 5' regions sequencing and HapMap database, we selected and genotyped 26 tagging single-nucleotide polymorphisms (SNPs) in 1932 obese cases and 1173 non-obese controls of French European origin. Variants that showed significant associations (P < 0.05) with obesity after correction for multiple testing were further tested in two additional European cohorts including 2645 individuals. For the identification of the potential causal variant(s), we further genotyped SNPs in high linkage disequilibrium (LD) with the obesity-associated variants. Of the 25 successfully genotyped CNR1 SNPs, 12 showed nominal evidence of association with childhood obesity, class I and II and/or class III adult obesity (1.16 < OR < 1.40, 0.00003 < P < 0.04). Intronic SNPs rs806381 and rs2023239, which resisted correction for multiple testing were further associated with higher BMI in both Swiss obese subjects and Danish individuals. The genotyping of all know variants in partial LD (r(2) > 0.5) with these two SNPs in the initial case-control study, identified two better associated SNPs (rs6454674 and rs10485170). Our study of 5750 subjects shows that CNR1 variations increase the risk for obesity and modulate BMI in our European population. As CB1 is a drug target for obesity, a pharmacogenetic analysis of the endocannabinoid blockade obesity treatment may be of interest to identify best responders.
Asunto(s)
Índice de Masa Corporal , Obesidad/genética , Receptor Cannabinoide CB1/genética , Población Blanca/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Femenino , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Obesidad/epidemiología , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
Bardet-Biedl syndrome (BBS) is a rare developmental disorder with the cardinal features of abdominal obesity, retinopathy, polydactyly, cognitive impairment, renal and cardiac anomalies, hypertension, and diabetes. BBS is genetically heterogeneous, with nine genes identified to date and evidence for additional loci. In this study, we performed mutation analysis of the coding and conserved regions of BBS1, BBS2, BBS4, and BBS6 in 48 French Caucasian individuals. Among the 36 variants identified, 12 were selected and genotyped in 1,943 French-Caucasian case subjects and 1,299 French-Caucasian nonobese nondiabetic control subjects. Variants in BBS2, BBS4, and BBS6 showed evidence of association with common obesity in an age-dependent manner, the BBS2 single nucleotide polymorphism (SNP) being associated with common adult obesity (P = 0.0005) and the BBS4 and BBS6 SNPs being associated with common early-onset childhood obesity (P = 0.0003) and common adult morbid obesity (0.0003 < P < 0.007). The association of the BBS4 rs7178130 variant was found to be supported by transmission disequilibrium testing (P = 0.006). The BBS6 variants also showed nominal evidence of association with quantitative components of the metabolic syndrome (e.g., dyslipidemia, hyperglycemia), a complication previously described in BBS patients. In summary, our preliminary data suggest that variations at BBS genes are associated with risk of common obesity.
Asunto(s)
Síndrome de Bardet-Biedl/genética , Obesidad/genética , Proteínas/genética , Adulto , Niño , Francia , Chaperoninas del Grupo II , Humanos , Proteínas Asociadas a Microtúbulos , Chaperonas Moleculares/genética , Polimorfismo de Nucleótido Simple , Población BlancaRESUMEN
To ascertain whether distinct chromosomal loci existed that were linked to severe obesity, as well as to utilize the increased heritability of this excessive phenotype, we performed a genome-wide scan in severely obese French Caucasians. The 109 selected pedigrees, totaling 447 individuals, required both the proband and a sibling to be severely obese (BMI >or=35 kg/m(2)), and 84.8% of the nuclear families possessed >or=1 morbidly obese sibling (BMI >or=40). Severe and morbid obesity are still relatively rare in France, with rates of 2.5 and 0.6%, respectively. The initial genome scan consisted of 395 evenly spaced microsatellite markers. Six regions were found to have suggestive linkage on 4q, 6cen-q, 17q, and 19q for a BMI >or=35 phenotypic subset, and 5q and 10q for an inclusive BMI >or=27 group. The highest peak on chromosome 19q (logarithm of odds [LOD] = 3.59) was significant by genome scan simulation testing (P = 0.042). These regions then underwent second-stage mapping with an additional set of 42 markers. BMI >or=35 analysis defined regions on 17q23.3-25.1 and 19q13.33-13.43 with an maximum likelihood score LOD of 3.16 and 3.21, respectively. Subsequent pooled data analysis with an additional previous population of 66 BMI >or=35 sib-pairs led to a significant LOD score of 3.8 at the 19q locus (empirical P = 0.023). For more moderate obesity and overweight susceptibility loci, BMI >or=27 analysis confirmed suggestive linkage to chromosome regions 5q14.3-q21.3 (LOD = 2.68) and 10q24.32-26.2 (LOD = 2.47). Plausible positional candidate genes include NR1H2 and TULP2.
Asunto(s)
Cromosomas Humanos Par 19 , Ligamiento Genético , Predisposición Genética a la Enfermedad , Genoma Humano , Obesidad Mórbida/genética , Población Blanca/genética , Índice de Masa Corporal , Mapeo Cromosómico , Cromosomas Humanos Par 17 , Femenino , Humanos , Escala de Lod , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Obesidad Mórbida/patología , FenotipoRESUMEN
HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient. Genetic association was found between rs10987746 of the wild type ENG allele and presence of pulmonary AVM [relative risk = 1.3 (1.0018-1.7424)]. The rs10987746-C at-risk allele associated with lower expression of ENG RNA in a panel of human lymphoblastoid cell lines (P = 0.004). Moreover, in angiogenically active human lung adenocarcinoma tissue, but not in uninvolved quiescent lung, rs10987746-C was correlated with expression of PTPN14 (P = 0.004), another modifier of HHT. Quantitative TAQMAN expression analysis in a panel of normal lung tissues from 69 genetically heterogeneous inter-specific backcross mice, demonstrated strong correlation between expression levels of Eng, Acvrl1, and Ptpn14 (r2 = 0.75-0.9, P < 1 × 10(-12)), further suggesting a direct or indirect interaction between these three genes in lung in vivo. Our data indicate that genetic variation within the single functional ENG gene influences quantitative and/or qualitative differences in ENG expression that contribute to risk of pulmonary AVM in HHT1, and provide correlative support for PTPN14 involvement in endoglin/ALK1 lung biology in vivo. PTPN14 has been shown to be a negative regulator of Yap/Taz signaling, which is implicated in mechanotransduction, providing a possible molecular link between endoglin/ALK1 signaling and mechanical stress. EMILIN2, which showed suggestive genetic association with pulmonary AVM, is also reported to interact with Taz in angiogenesis. Elucidation of the molecular mechanisms regulating these interactions in endothelial cells may ultimately provide more rational choices for HHT therapy.
RESUMEN
This study describes an attempt to replicate experiments from the paper "Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival," which was submitted to the Reproducibility Initiative for independent validation. The cathelicidin bovine myeloid antimicrobial peptide 28 (BMAP-28) and its isomers were previously shown to have potent antiparasitic activity against Leishmania major. We tested the effectiveness of L-BMAP-28 and two of its isomers, the D-amino acid form (D-BMAP-28) and the retro-inverso form (RI-BMAP-28), in both unamidated and amidated forms, as anti-leishmanial agents against Leishmania major promastigotes in vitro. We observed that L-BMAP-28, as well as its D and RI isomers, demonstrate anti-leishmanial activity against L. major promastigotes in vitro. The inhibitory effect was lower than what was seen in the original study. At 2 µM of amidated peptides, the viability was 94%, 36%, and 66% with L-, D- and RI-peptides, versus 57%, 6%, and 18% in the original study.
Asunto(s)
Antiprotozoarios/farmacología , Leishmania major/efectos de los fármacos , Metaloendopeptidasas/metabolismo , Viabilidad Microbiana , Proteínas/farmacología , Animales , HumanosRESUMEN
Hereditary haemorrhagic telangiectasia (HHT) [corrected] is a vascular dysplasia syndrome caused by mutations in transforming growth factor-ß/bone morphogenetic protein pathway genes, ENG and ACVRL1. HHT [corrected] shows considerable variation in clinical manifestations, suggesting environmental and/or genetic modifier effects. Strain-specific penetrance of the vascular phenotypes of Eng(+/-) and Tgfb1(-/-) mice provides further support for genetic modification of transforming growth factor-ß pathway deficits. We previously identified variant genomic loci, including Tgfbm2, which suppress prenatal vascular lethality of Tgfb1(-/-) mice. Here we show that human polymorphic variants of PTPN14 within the orthologous TGFBM2 locus influence clinical severity of HHT, [corrected] as assessed by development of pulmonary arteriovenous malformation. We also show that PTPN14, ACVRL1 and EFNB2, encoding EphrinB2, show interdependent expression in primary arterial endothelial cells in vitro. This suggests an involvement of PTPN14 in angiogenesis and/or arteriovenous fate, acting via EphrinB2 and ACVRL1/activin receptor-like kinase 1. These findings contribute to a deeper understanding of the molecular pathology of HHT [corrected] in particular and to angiogenesis in general.
Asunto(s)
Proteínas Tirosina Fosfatasas no Receptoras/fisiología , Telangiectasia Hemorrágica Hereditaria/genética , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animales , Mapeo Cromosómico , Efrina-B2/metabolismo , Exones , Femenino , Variación Genética , Haplotipos , Humanos , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Mutación , Fenotipo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Especificidad de la Especie , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Ghrelin exerts a stimulatory effect on appetite and regulates energy homeostasis. Ghrelin gene variants have been shown to be associated with metabolic traits, although there is evidence suggesting linkage and association with obesity and the ghrelin receptor (GHSR). We hypothesized that these genes are good candidates for susceptibility to obesity. Direct sequencing identified 12 ghrelin single-nucleotide polymorphisms (SNPs) and 8 GHSR SNPs. The 10 common SNPs were genotyped in 1,275 obese subjects and in 1,059 subjects from a general population cohort of European origin. In the obesity case-control study, the GHSR SNP rs572169 was found to be associated with obesity (P = 0.007 in additive model, P = 0.001 in dominant model, odds ratio (OR) 1.73, 95% confidence interval (1.23-2.44)). The ghrelin variant, g.A265T (rs4684677), showed an association with obesity (P = 0.009, BMI adjusted for age and sex) in obese families. The ghrelin variant, g.A-604G (rs27647), showed an association with insulin levels at 2-h post-oral glucose tolerance test (OGTT) (P = 0.009) in obese families. We found an association between the eating behavior "overeating" and the GHSR SNP rs2232169 (P = 0.02) in obese subjects. However, none of these associations remained significant when corrected for multiple comparisons. Replication of the nominal associations with obesity could not be confirmed in a German genome-wide association (GWA) study for rs4684677 and rs572169 polymorphisms. Our data suggest that common polymorphisms in ghrelin and its receptor genes are not major contributors to the development of polygenic obesity, although common variants may alter body weight and eating behavior and contribute to insulin resistance, in particular in the context of early-onset obesity.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Ghrelina/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Ghrelina/genética , Adolescente , Adulto , Glucemia/metabolismo , Peso Corporal/genética , Estudios de Casos y Controles , Niño , Conducta Alimentaria , Femenino , Francia , Ligamiento Genético/genética , Predisposición Genética a la Enfermedad/etnología , Alemania , Haplotipos/genética , Humanos , Insulina/sangre , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Obesidad/etnologíaRESUMEN
OBJECTIVE: The endocannabinoid pathway is involved in eating behavior and body weight regulation in both animals and humans. The association of a missense polymorphism (Pro129Thr) in FAAH gene with overweight/obesity has been recently questioned. SUBJECTS AND METHODS: To evaluate the contribution of the FAAH gene variation in polygenic obesity and type 2 diabetes mellitus (T2DM) in the French population, we investigated the entire FAAH locus. We selected and genotyped ten tagged single nucleotide polymorphisms (SNPs) in 635 obese children, 896 morbidly obese adults, 2,238 T2DM subjects and 1,340 control subjects, all of French European origin. Case control association tests were performed using logistic regression models. RESULTS: Nominal evidences of association were observed for rs6429600, rs324419, rs324418, rs2295633, rs7520850 and risk for class III adult obesity (0,001 < p < 0.04). The rs324420 (Pro129Thr) was nominally associated with class III adult obesity (ORadditive = 0.79 (95% CI 0.67-0.93), p = 0.005; ORdominant = 0.76 (95% CI 0.63-0.92), p = 0.005), Pro129 being the obesity risk allele. These associations did not remain significant after Bonferroni correction for multiple testing. There was no significant association between FAAH SNPs and risk for childhood obesity or T2DM. CONCLUSION: Our results in 5,109 subjects suggest that FAAH Pro129Thr polymorphism may modestly contribute to class III adult obesity in the French population. Further validation is needed to precise the role of this gene variant in obesity susceptibility background.
Asunto(s)
Amidohidrolasas/genética , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Francia , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Mutations in PCSK1 cause monogenic obesity. To assess the contribution of PCSK1 to polygenic obesity risk, we genotyped tag SNPs in a total of 13,659 individuals of European ancestry from eight independent case-control or family-based cohorts. The nonsynonymous variants rs6232, encoding N221D, and rs6234-rs6235, encoding the Q665E-S690T pair, were consistently associated with obesity in adults and children (P = 7.27 x 10(-8) and P = 2.31 x 10(-12), respectively). Functional analysis showed a significant impairment of the N221D-mutant PC1/3 protein catalytic activity.