Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mar Policy ; 131: 1-18, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37850151

RESUMEN

Although great progress has been made to advance the scientific understanding of oil spills, tools for integrated assessment modeling of the long-term impacts on ecosystems, socioeconomics and human health are lacking. The objective of this study was to develop a conceptual framework that could be used to answer stakeholder questions about oil spill impacts and to identify knowledge gaps and future integration priorities. The framework was initially separated into four knowledge domains (ocean environment, biological ecosystems, socioeconomics, and human health) whose interactions were explored by gathering stakeholder questions through public engagement, assimilating expert input about existing models, and consolidating information through a system dynamics approach. This synthesis resulted in a causal loop diagram from which the interconnectivity of the system could be visualized. Results of this analysis indicate that the system naturally separates into two tiers, ocean environment and biological ecosystems versus socioeconomics and human health. As a result, ocean environment and ecosystem models could be used to provide input to explore human health and socioeconomic variables in hypothetical scenarios. At decadal-plus time scales, the analysis emphasized that human domains influence the natural domains through changes in oil-spill related laws and regulations. Although data gaps were identified in all four model domains, the socioeconomics and human health domains are the least established. Considerable future work is needed to address research gaps and to create fully coupled quantitative integrative assessment models that can be used in strategic decision-making that will optimize recoveries from future large oil spills.

2.
J Theor Biol ; 439: 76-85, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29154908

RESUMEN

Larvae of coastal-marine fishes have been shown repeatedly to swim directionally in the pelagic environment. Yet, biophysical models of larval dispersal typically impose a Simple Random Walk (SRW) algorithm to simulate non-directional movement in the open ocean. Here we investigate the use of a Correlated Random Walk (CRW) algorithm; imposing auto-correlated directional swimming onto simulated larvae within a high-resolution 3D biophysical model of the Gulf of Aqaba, the Red Sea. Our findings demonstrate that implementation of auto-correlated directional swimming can result in an increase of up to ×2.7 in the estimated success rate of larval-settlement, as well as an increase in the extent of connectivity. With accumulating empirical support for the capacity for directional-swimming during the pelagic phase, we propose that CRW should be applied in biophysical models of dispersal by coastal marine fish-larvae.


Asunto(s)
Larva/fisiología , Modelos Biológicos , Orientación , Natación , Algoritmos , Animales , Conducta Animal , Peces , Movimiento , Distribución Aleatoria
3.
J Exp Biol ; 218(Pt 21): 3391-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385328

RESUMEN

A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move.


Asunto(s)
Conducta Animal , Sepia/fisiología , Adaptación Fisiológica , Animales , Color , Movimiento , Pigmentación de la Piel
4.
Curr Biol ; 34(17): 4033-4038.e5, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39106864

RESUMEN

Having a profound influence on marine and coastal environments worldwide, jellyfish hold significant scientific, economic, and public interest.1,2,3,4,5 The predictability of outbreaks and dispersion of jellyfish is limited by a fundamental gap in our understanding of their movement. Although there is evidence that jellyfish may actively affect their position,6,7,8,9,10 the role of active swimming in controlling jellyfish movement, and the characteristics of jellyfish swimming behavior, are not well understood. Consequently, jellyfish are often regarded as passively drifting or randomly moving organisms, both conceptually2,11 and in process studies.12,13,14 Here we show that the movement of jellyfish is modulated by distinctly directional swimming patterns that are oriented away from the coast and against the direction of surface gravity waves. Taking a Lagrangian viewpoint from drone videos that allows the tracking of multiple adjacent jellyfish, and focusing on the scyphozoan jellyfish Rhopilema nomadica as a model organism, we show that the behavior of individual jellyfish translates into a synchronized directional swimming of the aggregation as a whole. Numerical simulations show that this counter-wave swimming behavior results in biased correlated random-walk movement patterns that reduce the risk of stranding, thus providing jellyfish with an adaptive advantage critical to their survival. Our results emphasize the importance of active swimming in regulating jellyfish movement and open the way for a more accurate representation in model studies, thus improving the predictability of jellyfish outbreaks and their dispersion and contributing to our ability to mitigate their possible impact on coastal infrastructure and populations.


Asunto(s)
Escifozoos , Natación , Animales , Natación/fisiología , Escifozoos/fisiología
5.
Commun Biol ; 5(1): 1307, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460800

RESUMEN

The larval stage is the main dispersive process of most marine teleost species. The degree to which larval behavior controls dispersal has been a subject of debate. Here, we apply a cross-species meta-analysis, focusing on the fundamental question of whether larval fish use external cues for directional movement (i.e., directed movement). Under the assumption that directed movement results in straighter paths (i.e., higher mean vector lengths) compared to undirected, we compare observed patterns to those expected under undirected pattern of Correlated Random Walk (CRW). We find that the bulk of larvae exhibit higher mean vector lengths than those expected under CRW, suggesting the use of external cues for directional movement. We discuss special cases which diverge from our assumptions. Our results highlight the potential contribution of orientation to larval dispersal outcomes. This finding can improve the accuracy of larval dispersal models, and promote a sustainable management of marine resources.


Asunto(s)
Señales (Psicología) , Peces , Animales , Larva , Movimiento , Caminata
6.
Sci Adv ; 6(7): eaaw8863, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32095516

RESUMEN

Major oil spills are catastrophic events that immensely affect the environment and society, yet determining their spatial extent is a highly complex task. During the Deepwater Horizon (DWH) blowout, ~149,000 km2 of the Gulf of Mexico (GoM) was covered by oil slicks and vast areas of the Gulf were closed for fishing. Yet, the satellite footprint does not necessarily capture the entire oil spill extent. Here, we use in situ observations and oil spill transport modeling to examine the full extent of the DWH spill, focusing on toxic-to-biota (i.e., marine organisms) oil concentration ranges. We demonstrate that large areas of the GoM were exposed to invisible and toxic oil that extended beyond the boundaries of the satellite footprint and the fishery closures. With a global increase in petroleum production-related activities, a careful assessment of oil spills' full extent is necessary to maximize environmental and public safety.

7.
Environ Pollut ; 265(Pt A): 114925, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32563142

RESUMEN

An understudied consequence of coastal urbanization on marine environments is sound pollution. While underwater anthropogenic sounds are recognized as a threat to aquatic organisms, little is known about the effects of above-surface coastal sound pollution on adjacent underwater soundscapes and the organisms inhabiting them. Here, the impact of noise from the 2019 Ultra Music Festival® in Miami, FL, USA was assessed at the University of Miami Experimental Hatchery (UMEH) located directly adjacent to the music festival and on underwater sound levels in Bear Cut, a nearby water channel. In addition, stress hormone levels in fish held at UMEH were measured before and during the festival. Air sound levels recorded at UMEH during the Ultra Music Festival did not exceed 72 dBA and 98 dBC. The subsurface sound intensity levels in the low frequency band increased by 2-3 dB re 1 µPa in the adjacent waterway, Bear Cut, and by 7-9 dB re 1 µPa in the fish tanks at UMEH. Gulf toadfish (Opsanus beta) housed in the UMEH tanks experienced a 4-5 fold increase in plasma cortisol, their main stress hormone, during the first night of the Ultra Music Festival compared to two baseline samples taken 3 weeks and 4 days before Ultra. While this study offers preliminary insights into this type of sound pollution, more research is needed to conclude if Ultra caused a stress response in wild organisms and to fully understand the implications of this type of sound pollution.


Asunto(s)
Música , Animales , Peces , Vacaciones y Feriados , Ruido , Sonido
8.
Nat Ecol Evol ; 2(2): 306-316, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255297

RESUMEN

The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.


Asunto(s)
Distribución Animal , Peces/fisiología , Metagenoma , Animales , Arrecifes de Coral , Complejo IV de Transporte de Electrones/análisis , Proteínas de Peces/análisis , Peces/crecimiento & desarrollo , Israel , Larva/crecimiento & desarrollo , Larva/fisiología , Proteínas Mitocondriales/análisis , Océanos y Mares , Densidad de Población , Análisis Espacio-Temporal
9.
Front Physiol ; 7: 671, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144221

RESUMEN

Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

10.
PLoS One ; 9(2): e88468, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24516662

RESUMEN

Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.


Asunto(s)
Conducta Animal/fisiología , Arrecifes de Coral , Peces/fisiología , Orientación/fisiología , Animales , Señales (Psicología) , Luz , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA