RESUMEN
AlloMAPS 2 is an update of the Allosteric Mutation Analysis and Polymorphism of Signalling database, which contains data on allosteric communication obtained for predicted structures in the AlphaFold database (AFDB) and trRosetta-predicted Pfam domains. The data update contains Allosteric Signalling Maps (ASMs) and Allosteric Probing Maps (APMs) quantifying allosteric effects of mutations and of small probe binding, respectively. To ensure quality of the ASMs and APMs, we performed careful and accurate selection of protein sets containing high-quality predicted structures in both databases for each organism/structure, and the data is available for browsing and download. The data for remaining structures are available for download and should be used at user's discretion and responsibility. We believe these massive data can facilitate both diagnostics and drug design within the precision medicine paradigm. Specifically, it can be instrumental in the analysis of allosteric effects of pathological and rescue mutations, providing starting points for fragment-based design of allosteric effectors. The exhaustive character of allosteric signalling and probing fingerprints will be also useful in future developments of corresponding machine learning applications. The database is freely available at: http://allomaps.bii.a-star.edu.sg.
Asunto(s)
Proteínas , Transducción de Señal , Regulación Alostérica/genética , Proteínas/química , Mutación , Diseño de Fármacos , Bases de Datos de ProteínasRESUMEN
The omnipresence and diversity of allosteric regulation in proteins and protein associations complemented by the potential for the design of allosterically acting biologics and drugs call for the development of a new generation of computational models for the analysis of allostery and rational engineering/design of desired signaling and effector molecules determining it. One of the most important challenges is the consideration of the role of amino acid sequence in forming the protein's allosteric communication, including the mode and strength of the allosteric signal that is communicated to the regulated functional site. Here, we present the network-based model with a sequence dependence added in consideration of allosteric communication by combining the structure-based statistical mechanical model of allostery with the Miyazawa-Jernigan residue-residue potential. Applying the model in the analysis of five classical allosteric proteins, we found that it is necessary to consider the following two major determinants: (i) the free energy exerted by the allosteric site on the regulated one and (ii) the background (average) change in dynamics of the overall structure. We show that working together these two components determine the allosteric modulation, calling one to study their dependence on structures, oligomerization states, and sequence divergence in different proteins.
Asunto(s)
Proteínas , Transducción de Señal , Proteínas/química , Sitio Alostérico/fisiología , Regulación Alostérica , Secuencia de AminoácidosRESUMEN
The AlloSigMA 2 server provides an interactive platform for exploring the allosteric signaling caused by ligand binding and/or mutations, for analyzing the allosteric effects of mutations and for detecting potential cancer drivers and pathogenic nsSNPs. It can also be used for searching latent allosteric sites and for computationally designing allosteric effectors for these sites with required agonist/antagonist activity. The server is based on the implementation of the Structure-Based Statistical Mechanical Model of Allostery (SBSMMA), which allows one to evaluate the allosteric free energy as a result of the perturbation at per-residue resolution. The Allosteric Signaling Map (ASM) providing a comprehensive residue-by-residue allosteric control over the protein activity can be obtained for any structure of interest. The Allosteric Probing Map (APM), in turn, allows one to perform the fragment-based-like computational design experiment aimed at finding leads for potential allosteric effectors. The server can be instrumental in elucidating of allosteric mechanisms and actions of allosteric mutations, and in the efforts on design of new elements of allosteric control. The server is freely available at: http://allosigma.bii.a-star.edu.sg.
Asunto(s)
Mutación , Proteínas/química , Proteínas/genética , Programas Informáticos , Regulación Alostérica , Sitio Alostérico , Ligandos , Modelos Moleculares , Modelos Estadísticos , Proteínas/metabolismoRESUMEN
AlloMAPS database provides data on the causality and energetics of allosteric communication obtained with the structure-based statistical mechanical model of allostery (SBSMMA). The database contains data on allosteric signaling in three sets of proteins and protein chains: (i) 46 proteins with comprehensively annotated functional and allosteric sites; (ii) 1908 protein chains from PDBselect set of chains with low (<25%) sequence identity; (iii) 33 proteins with more than 50 known pathological SNPs in each molecule. In addition to energetics of allosteric signaling between known functional and regulatory sites, allosteric modulation caused by the binding to these sites, by SNPs, and by mutations designated by the user can be explored. Allosteric Signaling Maps (ASMs), which are produced via the exhaustive computational scanning for stabilizing and destabilizing mutations and for the modulation range caused by the sequence position are available for each protein/protein chain in the database. We propose to use this database for evaluating the effects of allosteric signaling in the search for latent regulatory sites and in the design of allosteric sites and effectors. The database is freely available at: http://allomaps.bii.a-star.edu.sg.
Asunto(s)
Regulación Alostérica/genética , Bases de Datos de Proteínas , Mutación , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética , Sitio Alostérico/genética , Animales , Enfermedades Genéticas Congénitas/genética , Humanos , Internet , Modelos Químicos , Modelos Moleculares , Conformación Proteica , Relación Estructura-ActividadRESUMEN
Abundant and essential motifs, such as phosphate-binding loops (P-loops), are presumed to be the seeds of modern enzymes. The Walker-A P-loop is absolutely essential in modern NTPase enzymes, in mediating binding, and transfer of the terminal phosphate groups of NTPs. However, NTPase function depends on many additional active-site residues placed throughout the protein's scaffold. Can motifs such as P-loops confer function in a simpler context? We applied a phylogenetic analysis that yielded a sequence logo of the putative ancestral Walker-A P-loop element: a ß-strand connected to an α-helix via the P-loop. Computational design incorporated this element into de novo designed ß-α repeat proteins with relatively few sequence modifications. We obtained soluble, stable proteins that unlike modern P-loop NTPases bound ATP in a magnesium-independent manner. Foremost, these simple P-loop proteins avidly bound polynucleotides, RNA, and single-strand DNA, and mutations in the P-loop's key residues abolished binding. Binding appears to be facilitated by the structural plasticity of these proteins, including quaternary structure polymorphism that promotes a combined action of multiple P-loops. Accordingly, oligomerization enabled a 55-aa protein carrying a single P-loop to confer avid polynucleotide binding. Overall, our results show that the P-loop Walker-A motif can be implemented in small and simple ß-α repeat proteins, primarily as a polynucleotide binding motif.
Asunto(s)
Sitios de Unión , Fosfatos/química , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Dominio Catalítico , ADN , Evolución Molecular , Magnesio , Modelos Moleculares , Mutación , Nucleósido-Trifosfatasa/química , Filogenia , Polinucleótidos , Unión Proteica , Conformación Proteica , ARN , Proteínas de Unión al ARN/química , Alineación de Secuencia , Homología de Secuencia de AminoácidoRESUMEN
Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved ß-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.
Asunto(s)
Péptidos , Proteínas Quinasas , Regulación Alostérica , Sitio Alostérico , Sitios de Unión , Ligandos , Proteínas Quinasas/metabolismoRESUMEN
We propose a new computational method for exploring chromatin structural organization based on Markov State Modelling of Hi-C data represented as an interaction network between genomic loci. A Markov process describes the random walk of a traveling probe in the corresponding energy landscape, mimicking the motion of a biomolecule involved in chromatin function. By studying the metastability of the associated Markov State Model upon annealing, the hierarchical structure of individual chromosomes is observed, and corresponding set of structural partitions is identified at each level of hierarchy. Then, the notion of effective interaction between partitions is derived, delineating the overall topology and architecture of chromosomes. Mapping epigenetic data on the graphs of intra-chromosomal effective interactions helps in understanding how chromosome organization facilitates its function. A sketch of whole-genome interactions obtained from the analysis of 539 partitions from all 23 chromosomes, complemented by distributions of gene expression regulators and epigenetic factors, sheds light on the structure-function relationships in chromatin, delineating chromosomal territories, as well as structural partitions analogous to topologically associating domains and active / passive epigenomic compartments. In addition to the overall genome architecture shown by effective interactions, the affinity between partitions of different chromosomes was analyzed as an indicator of the degree of association between partitions in functionally relevant genomic interactions. The overall static picture of whole-genome interactions obtained with the method presented in this work provides a foundation for chromatin structural reconstruction, for the modelling of chromatin dynamics, and for exploring the regulation of genome function. The algorithms used in this study are implemented in a freely available Python package ChromaWalker (https://bitbucket.org/ZhenWahTan/chromawalker).
Asunto(s)
Cromatina/genética , Modelos Genéticos , Algoritmos , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 17/metabolismo , Biología Computacional , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Código de Histonas/genética , Humanos , Cadenas de Markov , CohesinasRESUMEN
The omnipresence of allosteric regulation together with the fundamental role of structural dynamics in this phenomenon have initiated a great interest to the detection of regulatory exosites and design of corresponding effectors. However, despite a general consensus on the key role of dynamics most of the earlier efforts on the prediction of allosteric sites are heavily crippled by the static nature of the underlying methods, which are either structure-based approaches seeking for deep surface pockets typical for "traditional" orthosteric drugs or sequence-based techniques exploiting the conservation of protein sequences. Because of the critical role of global protein dynamics in allosteric signaling, we investigate the hypothesis of reversibility in allosteric communication, according to which allosteric sites can be detected via the perturbation of the functional sites. The reversibility is tested here using our structure-based perturbation model of allostery, which allows one to analyze the causality and energetics of allosteric communication. We validate the "reverse perturbation" hypothesis and its predictive power on a set of classical allosteric proteins, then, on the independent extended benchmark set. We also show that, in addition to known allosteric sites, the perturbation of the functional sites unravels rather extended protein regions, which can host latent regulatory exosites. These protein parts that are dynamically coupled with functional sites can also be used for inducing and tuning allosteric communication, and an exhaustive exploration of the per-residue contributions to allosteric effects can eventually lead to the optimal modulation of protein activity. The site-effector interactions necessary for a specific mode and level of allosteric communication can be fine-tuned by adjusting the site's structure to an available effector molecule and by the design or selection of an appropriate ligand.
Asunto(s)
Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Unión Proteica/fisiología , Sitios de Unión/fisiología , Ligandos , Modelos Moleculares , Conformación Proteica , Proteínas/química , Transducción de Señal , Relación Estructura-ActividadRESUMEN
MOTIVATION: Allostery is an omnipresent mechanism of the function modulation in proteins via either effector binding or mutations in the exosites. Despite the growing number of online servers and databases devoted to prediction/classification of allosteric sites and their characteristics, there is a lack of resources for an efficient and quick estimation of the causality and energetics of allosteric communication. RESULTS: The AlloSigMA server implements a unique approach on the basis of the recently introduced structure-based statistical mechanical models of allosteric signaling. It provides an interactive framework for estimating the allosteric free energy as a result of the ligand(s) binding, mutation(s) and their combinations. Latent regulatory exosites and allosteric effect of mutations can be detected and explored, facilitating the research efforts in protein engineering and allosteric drug design. AVAILABILITY AND IMPLEMENTATION: The AlloSigMA server is freely available at http://allosigma.bii.a-star.edu.sg/home/. CONTACT: igorb@bii.a-star.edu.sg.
Asunto(s)
Sitio Alostérico , Biología Computacional/métodos , Mutación , Transducción de Señal , Regulación Alostérica , Ligandos , Modelos Moleculares , Modelos Estadísticos , Unión Proteica , Proteínas/metabolismoRESUMEN
NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand-protein interactions found in crystallized ligand-protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions.
Asunto(s)
Secuencias de Aminoácidos , Bases de Datos de Proteínas , Nucleótidos/metabolismo , Ligandos , Unión Proteica , Proteínas/metabolismo , Análisis de Secuencia de ProteínaRESUMEN
The physiological role of insulin-degrading enzyme (IDE) in the intracytosolic clearance of amyloid ß (Aß) and other amyloid-like peptides supports a hypothesis that human IDE hyperactivation could be therapeutically beneficial for the treatment of late-onset Alzheimer's disease (AD). The major challenge standing in the way of this goal is increasing the specific catalytic activity of IDE against the Aß substrate. There were previous indications that the allosteric mode of IDE activity regulation could potentially provide a highly specific path toward degradation of amyloid-like peptides, while not dramatically affecting activity against other substrates. Recently developed theoretical concepts are used here to explore potential allosteric modulation of the IDE activity as a result of single-residue mutations. Five candidates are selected for experimental follow-up and allosteric free energy calculations: Ser137Ala, Lys396Ala, Asp426Ala, Phe807Ala, and Lys898Ala. Our experiments show that three mutations (Ser137Ala, Phe807Ala, and Lys898Ala) decrease the Km of the Aß substrate. Mutation Lys898Ala results in increased catalytic activity of IDE; on the other hand, Lys364Ala does not change the activity and Asp426Ala diminishes it. Quantifying effects of mutations in terms of allosteric free energy, we show that favorable mutations lead to stabilization of the catalytic sites and other function-relevant distal sites as well as increased dynamics of the IDE-N and IDE-C halves that allow efficient substrate entrance and cleavage. A possibility for intramolecular upregulation of IDE activity against amyloid peptides via allosteric mutations calls for further investigations in this direction. Ultimately, we are hopeful it will lead to the development of IDE-based drugs for the treatment of the late-onset form of AD characterized by an overall impairment of Aß clearance.
Asunto(s)
Regulación Alostérica , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Insulisina/metabolismo , Algoritmos , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Proteínas Amiloidogénicas/química , Biocatálisis , Dominio Catalítico , Biología Computacional/métodos , Pruebas de Enzimas/métodos , Humanos , Insulisina/química , Insulisina/genética , Cinética , Modelos Moleculares , Mutación Missense , Dominios Proteicos , Especificidad por Sustrato , TermodinámicaRESUMEN
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design.
Asunto(s)
Regulación Alostérica , Enzimas/química , Enzimas/ultraestructura , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Sitio Alostérico , Secuencia de Aminoácidos , Simulación por Computador , Transferencia de Energía , Activación Enzimática , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , TermodinámicaRESUMEN
DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.
Asunto(s)
Adaptación Fisiológica/genética , ADN/química , Evolución Molecular , Proteínas/química , ARN/química , Aerobiosis , Composición de Base , Secuencia de Bases , Codón , Nucleótidos/análisis , ARN Mensajero/química , Análisis de Secuencia de Proteína , TemperaturaRESUMEN
The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions-elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.
Asunto(s)
Archaea/genética , Proteínas Arqueales/genética , Evolución Molecular , Modelos Genéticos , Archaea/química , Archaea/enzimología , Archaea/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Conformación ProteicaRESUMEN
The SPACER server provides an interactive framework for exploring allosteric communication in proteins with different sizes, degrees of oligomerization and function. SPACER uses recently developed theoretical concepts based on the thermodynamic view of allostery. It proposes easily tractable and meaningful measures that allow users to analyze the effect of ligand binding on the intrinsic protein dynamics. The server shows potential allosteric sites and allows users to explore communication between the regulatory and functional sites. It is possible to explore, for instance, potential effector binding sites in a given structure as targets for allosteric drugs. As input, the server only requires a single structure. The server is freely available at http://allostery.bii.a-star.edu.sg/.
Asunto(s)
Conformación Proteica , Programas Informáticos , Regulación Alostérica , Sitio Alostérico , Internet , Modelos Moleculares , TermodinámicaRESUMEN
We overview here our recent work on the thermodynamic view of allosteric regulation and communication. Starting from the geometry-based prediction of regulatory binding sites in a static structure, we move on to exploring a connection between ligand binding and the intrinsic dynamics of the protein molecule. We describe here two recently introduced measures, binding leverage and leverage coupling, which allow one to analyze the molecular basis of allosteric regulation. We discuss the advantages of these measures and show that they work universally in proteins of different sizes, oligomeric states, and functions. We also point the problems that have to be solved before completing an atomic level description of allostery, and briefly discuss ideas for computational design of allosteric drugs. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Termodinámica , Regulación Alostérica , Modelos MolecularesRESUMEN
Natural selection shapes the sequence, structure and biophysical properties of proteins to fit their environment. We hypothesize that highly thermostable proteins and viral proteins represent two opposing adaptation strategies. Thermostable proteins are highly compact and possess well-packed hydrophobic cores and intensely charged surfaces. By contrast, viral proteins, and RNA viral proteins in particular, display a high occurrence of disordered segments and loosely packed cores. These features might endow viral proteins with increased structural flexibility and effective ways to interact with the components of the host. They could also be related to high adaptability levels and mutation rates observed in viruses, thus, representing a unique strategy for buffering the deleterious effects of mutations, such that those that have little (interactions), have little to lose.
Asunto(s)
Proteínas Virales/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación , Conformación Proteica , Termodinámica , Proteínas Virales/metabolismoRESUMEN
Focusing on an important biomedical implication of allostery - design of allosteric drugs, we describe characteristics of allosteric sites, effectors, and their modes of actions distinguishing them from the orthosteric counterparts and calling for new principles and protocols in the quests for allosteric drugs. We show the importance of considering both binding affinity and allosteric signaling in establishing the structure-activity relationships (SARs) toward design of allosteric effectors, arguing that pairs of allosteric sites and their effector ligands - the site-effector pairs - should be generated and adjusted simultaneously in the framework of what we call directed design protocol. Key ideas and approaches for designing allosteric effectors including reverse perturbation, targeted and agnostic analysis are also discussed here. Several promising computational approaches are highlighted, along with the need for and potential advantages of utilizing generative models to facilitate discovery/design of new allosteric drugs.
Asunto(s)
Proteínas , Transducción de Señal , Proteínas/metabolismo , Sitio Alostérico , Ligandos , Relación Estructura-Actividad , Regulación AlostéricaRESUMEN
Binding of nucleotides and their derivatives is one of the most ancient elementary functions dating back to the Origin of Life. We review here the works considering one of the key elements in binding of (di)nucleotide-containing ligands - phosphate binding. We start from a brief discussion of major participants, conditions, and events in prebiotic evolution that resulted in the Origin of Life. Tracing back to the basic functions, including metal and phosphate binding, and, potentially, formation of primitive protein-protein interactions, we focus here on the phosphate binding. Critically assessing works on the structural, functional, and evolutionary aspects of phosphate binding, we perform a simple computational experiment reconstructing its most ancient and generic sequence prototype. The profiles of the phosphate binding signatures have been derived in form of position-specific scoring matrices (PSSMs), their peculiarities depending on the type of the ligands have been analyzed, and evolutionary connections between them have been delineated. Then, the apparent prototype that gave rise to all relevant phosphate-binding signatures had also been reconstructed. We show that two major signatures of the phosphate binding that discriminate between the binding of dinucleotide- and nucleotide-containing ligands are GxGxxG and GxxGxG, respectively. It appears that the signature archetypal for dinucleotide-containing ligands is more generic, and it can frequently bind phosphate groups in nucleotide-containing ligands as well. The reconstructed prototype's key signature GxGGxG underlies the role of glycine residues in providing flexibility and interactions necessary for binding the phosphate groups. The prototype also contains other ancient amino acids, valine, and alanine, showing versatility towards evolutionary design and functional diversification.
RESUMEN
Since nucleic acids and proteins of unicellular prokaryotes are directly exposed to extreme environmental conditions, it is possible to explore the genomic-proteomic compositional determinants of molecular mechanisms of adaptation developed by them in response to harsh environmental conditions. Using a wealth of currently available complete genomes/proteomes we were able to explore signatures of adaptation to three environmental factors, pH, salinity, and temperature, observing major trends in compositions of their nucleic acids and proteins. We derived predictors of thermostability, halophilic, and pH adaptations and complemented them by the principal components analysis. We observed a clear difference between thermophilic and salinity/pH adaptations, whereas latter invoke seemingly overlapping mechanisms. The genome-proteome compositional trade-off reveals an intricate balance between the work of base paring and base stacking in stabilization of coding DNA and r/tRNAs, and, at the same time, universal requirements for the stability and foldability of proteins regardless of the nucleotide biases. Nevertheless, we still found hidden fingerprints of ancient evolutionary connections between the nucleotide and amino acid compositions indicating their emergence, mutual evolution, and adjustment. The evolutionary perspective on the adaptation mechanisms is further studied here by means of the comparative analysis of genomic/proteomic traits of archaeal and bacterial species. The overall picture of genomic/proteomic signals of adaptation obtained here provides a foundation for future engineering and design of functional biomolecules resistant to harsh environments.