RESUMEN
BACKGROUND: Calf diarrhea is a major cause of morbidity and mortality in the livestock sector worldwide and it can be caused by multiple infectious agents. In Ethiopia, cattle are the most economically important species within the livestock sector, but at the same time the young animals suffer from high rates of morbidity and mortality due to calf diarrhea. However, studies including both screening and molecular characterization of bovine enteric pathogens are lacking. Therefore, we aimed to both detect and molecularly characterize four of the major enteric pathogens in calf diarrhea, Enterotoxigenic Escherichia coli (E. coli K99 +), Cryptosporidium spp., rotavirus A (RVA), and bovine coronavirus (BCoV) in calves from central Ethiopia. Diarrheic and non-diarrheic calves were included in the study and fecal samples were analyzed with antigen-ELISA and quantitative real-time PCR (qPCR). Positive samples were further characterized by genotyping PCRs. RESULTS: All four pathogens were detected in both diarrheic and non-diarrheic calves using qPCR and further characterization showed the presence of three Cryptosporidium species, C. andersoni, C. bovis and C. ryanae. Furthermore, genotyping of RVA-positive samples found a common bovine genotype G10P[11], as well as a more unusual G-type, G24. To our knowledge this is the first detection of the G24 RVA genotype in Ethiopia as well as in Africa. Lastly, investigation of the spike gene revealed two distinct BCoV strains, one classical BCoV strain and one bovine-like CoV strain. CONCLUSIONS: Our results show that Cryptosporidium spp., E. coli K99 + , RVA and BCoV circulate in calves from central Ethiopia. Furthermore, our findings of the rare RVA G-type G24 and a bovine-like CoV demonstrates the importance of genetic characterization.
Asunto(s)
Enfermedades de los Bovinos , Coronavirus Bovino , Cryptosporidium , Diarrea , Heces , Rotavirus , Animales , Bovinos , Etiopía/epidemiología , Diarrea/veterinaria , Diarrea/virología , Diarrea/microbiología , Diarrea/parasitología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/parasitología , Heces/virología , Heces/parasitología , Heces/microbiología , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Cryptosporidium/aislamiento & purificación , Cryptosporidium/genética , Cryptosporidium/clasificación , Coronavirus Bovino/genética , Coronavirus Bovino/aislamiento & purificación , Escherichia coli Enterotoxigénica/aislamiento & purificación , Escherichia coli Enterotoxigénica/genética , Genotipo , Criptosporidiosis/epidemiología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiologíaRESUMEN
Equid alphaherpesvirus 1 (EHV-1) is a ubiquitous and significant viral pathogen in horses worldwide, causing a range of conditions, including fever, respiratory disease, abortion in pregnant mares and the severe neurological disease called equine herpes myeloencephalopathy (EHM). Despite that EHV-1 is a notifiable animal disease in Sweden, there is limited knowledge about the circulating strains. This study aimed to analyze the genetic diversity of EHV-1 strains in equine samples from different Swedish outbreaks by partial genome sequencing. Genotyping based on three selected open reading frames ORF11, ORF30, and ORF34 in the viral genome was conducted for 55 outbreaks of EHV-1 spanning from the years 2012 to 2021. The analysis revealed 14 different genovariants, with one prominent genovariant identified in 49% of the outbreaks. Additionally, the study identified seven mutations not previously described. Three new mutations were demonstrated in ORF11, all synonymous, and four new mutations in ORF34, two synonymous, and two non-synonymous. Notably, different EHV-1 genovariants were found in five out of six studied EHM outbreaks, but clonal spreading was shown within the outbreaks. Moreover, the study demonstrated that healthy (recovered) horses that returned from an EHM outbreak at an international meeting in Valencia, Spain (2021), were positive for the virus clone responsible for the severe disease outbreak despite several weeks of quarantine. These findings shed light on the genetic diversity and transmission dynamics of the virus and significantly contribute to better understanding of the epidemiology of EHV-1 in Sweden and globally.
Asunto(s)
Brotes de Enfermedades , Variación Genética , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Caballos , Suecia/epidemiología , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/aislamiento & purificación , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/epidemiología , Brotes de Enfermedades/veterinaria , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/virología , Genoma Viral , Genotipo , Sistemas de Lectura AbiertaRESUMEN
The present paper describes the investigation of the first outbreaks of adenoviral gizzard erosions (AGE) in Sweden, in five broiler flocks. The investigation included whole viral genome sequencing and investigation of genomic organization and sequence relationships with other adenoviruses. All five flocks had a history of decreased growth and uneven size of birds since 9-10 days of age. Macroscopically, lesions consistent with AGE (detached koilin layers, discolouration, bleeding, erosions) were identified in gizzards in all five flocks. In four flocks histology was performed, and degeneration and inflammation of the koilin layer and gizzard mucosa were identified in all four. In one flock, intranuclear inclusion bodies typical for fowl adenovirus (FAdV) were detected in trapped epithelial cells in the koilin layer. In four flocks in situ hybridization was performed, and cells positive for FAdV serotype 1 (FAdV-1) were demonstrated in the koilin layer and gizzard mucosa. FAdV species A (FAdV-A) was detected in gizzard, liver, caecal tonsils and bursa of Fabricius by polymerase chain reaction (PCR) and sequencing. Ten out of ten examined parent flocks of the affected chickens were seropositive for FAdV, indicating former or on-going infection. However, FAdV was not detected in embryos from seropositive parent flocks and thus vertical transmission was not demonstrated. The entire nucleotide sequence of one sample was determined and found to be 43,856 base pairs (bp) in length. The genome sequence and organization were found to be similar to that of the reference apathogenic avian adenovirus "chicken embryo lethal orphan" (CELO). RESEARCH HIGHLIGHTSAGE in Swedish broilers: necropsy, histopathology, ISH, PCR, whole-genome sequencing.Whole FAdV-genome analysed: 43,856â bp, found to be most similar to CELO (U46933.1).Multiple point mutations, site insertions and deletions identified compared to CELO.Paper adds knowledge about European disease situation and pathogenic FAdV-strains.
Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Adenovirus A Aviar , Enfermedades de las Aves de Corral , Adenoviridae , Infecciones por Adenoviridae/epidemiología , Infecciones por Adenoviridae/veterinaria , Animales , Aviadenovirus/genética , Embrión de Pollo , Pollos , Brotes de Enfermedades/veterinaria , Adenovirus A Aviar/genética , Molleja de las Aves/patología , Serogrupo , Suecia/epidemiologíaRESUMEN
To understand the population genetics events during coronavirus host switches, the Beaudette strain of Avian coronavirus (AvCoV) adapted to BHK-21 cells was passaged 15 times in VERO cells, the virus load and the variants at each passage being determined by RT-qPCR and genome-length deep sequencing. From BHK-21 P2 to VERO P3, a trend for the extinction of variants was followed by stability up to VERO P11 and both the emergence and the rise in frequency in some variants, while the virus loads were stable up to VERO P12. At the spillover from BHK-21 to VERO cells, variants that both emerged, showed a rise in frequency or were extinguished were detected on the spike, while variants at the M gene showed the same pattern only at VERO passage 13. Furthermore, nsps 3-5, 9 and 15 variants were detected at lower passages compared to the consensus sequences, with those at nsp3 being detected in the spectra also at higher passages. This suggests that quasispecies coronavirus evolution in spillovers follows the virus life cycle, starting with the evolution of the receptor binding proteins, followed by the replicase and then proteins involved in virion assembly, keeping the general fitness of the mutant spectrum stable.
RESUMEN
Virus-based biologicals are one of the most promising biopharmaceuticals of the 21st century medicine and play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. Oncolytic virus manufacturing scale can range from 5 L in research and development up to 50 L for clinical studies and reach hundreds of liters for commercial scale. The inherent productivity and high integration potential of periodic counter-current chromatography (PCC) offer a transversal solution to decrease equipment footprint and the reduction of several non-value-added unit operations. We report on the design of an efficient PCC process applied to the intermediate purification of oncolytic adenovirus. The developed ion-exchange chromatographic purification method was carried out using a four-column setup for three different scenarios: (i) variation in the feedstock, (ii) potential use of a post-load washing step to improve virus recovery, and (iii) stability during extended operation. Obtained virus recoveries (57%-86%) and impurity reductions (>80% DNA, and >70% total protein) match or overcome batch purification. Regarding process stability and automation, our results show that not only the dynamic control strategy used is able to suppress perturbations in the sample inlet but also allows for unattended operation in the case of ion exchange capture.
Asunto(s)
Productos Biológicos/aislamiento & purificación , Virus Oncolíticos/aislamiento & purificación , Células A549 , Distribución en Contracorriente , HumanosRESUMEN
Avian coronavirus (AvCoV) is ubiquitously present on poultry as a multitude of virus lineages. Studies on AvCoV phenotypic traits are dependent on the isolation of field strains in chicken embryonated eggs, but the mutant spectrum on each isolate is not considered. This manuscript reports the previously unknown HTS (high throughput sequencing)-based complete genome haplotyping of AvCoV isolates after passages of two field strains in chicken embryonated eggs. For the first and third passages of strain 23/2013, virus loads were 6.699 log copies/ µL and 6 log copies/ µL and, for 38/2013, 5.699 log copies/µL and 2.699 log copies/µL of reaction, respectively. The first passage of strain 23/2013 contained no variant haplotype, while, for the third passage, five putative variant haplotypes were found, with > 99.9% full genome identity with each other and with the dominant genome. Regarding strain 38/2013, five variant haplotypes were found for the first passage, with > 99.9% full genome identity with each other and with the dominant genome, and a single variant haplotype was found. Extinction and emergence of haplotypes with polymorphisms in genes involved in receptor binding and regulation of RNA synthesis were observed, suggesting that phenotypic traits of AvCoV isolates are a result of their mutant spectrum.
RESUMEN
BACKGROUND: Mosquitoes are the potential vectors for a variety of viruses that can cause diseases in the human and animal populations. Viruses in the order Picornavirales infect a broad range of hosts, including mosquitoes. In this study, we aimed to characterize a novel picorna-like virus from the Culex spp. of mosquitoes from the Zambezi Valley of Mozambique. METHODS: The extracted RNA from mosquito pools was pre-amplified with the sequence independent single primer amplification (SISPA) method and subjected to high-throughput sequencing using the Ion Torrent platform. Reads that are classified as Iflaviridae, Picornaviridae and Dicistroviridae were assembled by CodonCode Aligner and SPAdes. Gaps between the viral contigs were sequenced by PCR. The genomic ends were analyzed by 5' and 3' RACE PCRs. The ORF was predicted with the NCBI ORF finder. The conserved domains were identified with ClustalW multiple sequence alignment, and a phylogenetic tree was built with MEGA. The presence of the virus in individual mosquito pools was detected by RT-PCR assay. RESULTS: A near full-length viral genome (9740 nt) was obtained in Culex mosquitoes that encoded a complete ORF (3112 aa), named Culex picorna-like virus (CuPV-1). The predicted ORF had 38% similarity to the Hubei picorna-like virus 35. The sequence of the conserved domains, Helicase-Protease-RNA-dependent RNA polymerase, were identified by multiple sequence alignment and found to be at the 3' end, similar to iflaviruses. Phylogenetic analysis of the putative RdRP amino acid sequences indicated that the virus clustered with members of the Iflaviridae family. CuPV-1 was detected in both Culex and Mansonia individual pools with low infection rates. CONCLUSIONS: The study reported a highly divergent, near full-length picorna-like virus genome from Culex spp. mosquitoes from Mozambique. The discovery and characterization of novel viruses in mosquitoes is an initial step, which will provide insights into mosquito-virus interaction mechanisms, genetic diversity and evolution.
Asunto(s)
Culex/virología , Filogenia , Picornaviridae/clasificación , Picornaviridae/genética , Secuencia de Aminoácidos , Animales , Genoma Viral , Virus de Insectos/clasificación , Virus de Insectos/genética , Metagenómica , Mozambique , Sistemas de Lectura Abierta , ARN Viral/genética , Alineación de Secuencia , Proteínas ViralesRESUMEN
Porcine circovirus 3 (PCV3) is a newly detected circovirus belonging to the family Circoviridae with a circular ssDNA genome of 2000 bp that encodes two proteins-the replicase protein and the capsid protein. PCV3 was discovered for the first time in the US in 2016. After this initial discovery, PCV3 was detected in other parts of the world such as in China, South Korea, Italy and Poland. In this study, 49 tissue samples from Swedish pig herds were screened for PCV3 using PCR and 10 samples were positive and one was uncertain. The entire PCV3 genome and a mini PCV-like virus (MPCLV) were obtained from one of these samples. These two viruses showed a high sequence identity to PCV3 viruses from other countries as well as to MPCLV from the US. However, the sequence identity to PCV1 and 2 was only 31-48% on amino acid level. This is the first detection and complete genetic characterisation of PCV3 in Swedish pigs. It is also interesting to note that one of the positive samples was collected in 1993, showing that PCV3 has been present for a long time.
Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/genética , Genoma Viral , Enfermedades de los Porcinos/virología , Animales , Infecciones por Circoviridae/virología , Circovirus/clasificación , Circovirus/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Suecia , Porcinos , Proteínas Virales/genética , Secuenciación Completa del GenomaRESUMEN
Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease.
Asunto(s)
Clonación Molecular , Expresión Génica , Proteína HN , Inmunogenicidad Vacunal , Rubulavirus , Vacunas Virales , Animales , Escherichia coli , Femenino , Proteína HN/biosíntesis , Proteína HN/inmunología , Proteína HN/aislamiento & purificación , Proteína HN/farmacología , Ratones , Ratones Endogámicos BALB C , Rubulavirus/enzimología , Rubulavirus/inmunología , Porcinos , Vacunas Virales/biosíntesis , Vacunas Virales/inmunologíaRESUMEN
BACKGROUND: African swine fever (ASF) is a fatal, haemorrhagic disease of domestic pigs, that poses a serious threat to pig farmers and is currently endemic in domestic pigs in most of sub-Saharan Africa. To obtain insight into the factors related to ASF outbreaks at the farm-level, a longitudinal study was performed in one of the major pig producing areas in central Uganda. Potential risk factors associated with outbreaks of ASF were investigated including the possible presence of apparently healthy ASF-virus (ASFV) infected pigs, which could act as long-term carriers of the virus. Blood and serum were sampled from 715 pigs (241 farms) and 649 pigs (233 farms) to investigate presence of ASFV and antibodies, during the periods of June-October 2010 and March-June 2011, respectively. To determine the potential contribution of different risks to ASF spread, a questionnaire-based survey was administered to farmers to assess the association between ASF outbreaks during the study period and the risk factors. RESULTS: Fifty-one (21 %) and 13 (5.6 %) farms reported an ASF outbreak on their farms in the previous one to two years and during the study period, respectively. The incidence rate for ASF prior to the study period was estimated at 14.1 per 100 pig farm-years and 5.6 per 100 pig farm-years during the study. Three pigs tested positive for ASFV using real-time PCR, but none tested positive for ASFV specific antibodies using two different commercial ELISA tests. CONCLUSIONS: There was no evidence for existence of pigs that were long-term carriers for the virus based on the analysis of blood and serum as there were no seropositive pigs and the only three ASFV DNA positive pigs were acutely infected and were linked to outbreaks reported by farmers during the study. Potential ASF risk factors were present on both small and medium-scale pig farms, although small scale farms exhibited a higher proportion with multiple potential risk factors (like borrowing boars for sows mating, buying replacement from neighboring farms without ascertaining health status, etc) and did not implement any biosecurity measures. However, no risk factors were significantly associated with ASF reports during the study.
Asunto(s)
Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/sangre , Fiebre Porcina Africana/virología , Animales , Anticuerpos Antivirales/sangre , ADN Viral/sangre , ADN Viral/inmunología , Brotes de Enfermedades , Estudios Longitudinales , Factores de Riesgo , Porcinos , Uganda/epidemiologíaRESUMEN
Borna disease virus (BDV) is a neurotropic, negative-stranded RNA virus causing persistent infection and progressive neurological disorders in a wide range of warm-blooded animals. The role of the small non-structural X protein in viral pathogenesis is not completely understood. Here we investigated whether the X protein of BDV and avian bornavirus (ABV) interferes with the type I interferon (IFN) system, similar to other non-structural proteins of negative-stranded RNA viruses. In luciferase reporter assays, we found that the X protein of various bornaviruses interfered with the type I IFN system at all checkpoints investigated, in contrast to previously reported findings, resulting in reduced type I IFN secretion.
Asunto(s)
Bornaviridae/inmunología , Bornaviridae/patogenicidad , Evasión Inmune , Interferón Tipo I/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Genes Reporteros , Humanos , Luciferasas/análisis , Luciferasas/genética , Datos de Secuencia Molecular , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas no Estructurales Virales/inmunología , Factores de Virulencia/inmunologíaRESUMEN
Avian paramyxovirus serotype 1 (APMV-1) was isolated from an acute and highly contagious outbreak in peacocks (Pavo cristatus) in a wildlife park in Pakistan. A velogenic neurotropic form of APMV-1 caused a 100% case fatality rate and killed 190 peacocks within a week. Biological and serological characterizations showed features of a velogenic strain of APMV-1, and these results were further confirmed by sequence analysis of the cleavage site in the fusion protein. The complete genome of one of the isolates was sequenced, and phylogenetic analysis was conducted. The analysis showed that this isolate belonged to genotype VII, specifically, to subgenotype VIIa, and clustered closely with isolates characterized from Indonesia in the 1990s. Interestingly, the isolate showed significant differences from previously characterized APMV-1 isolates from commercial and rural chickens in Pakistan. The work presented here is the first complete genome sequence of any APMV-1 isolate from wild birds in the region and therefore highlights the need for increased awareness and surveillance in such bird species.
Asunto(s)
Animales de Zoológico/virología , Brotes de Enfermedades , Galliformes , Genoma Viral/genética , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/patogenicidad , Pakistán/epidemiología , Filogenia , Análisis de Secuencia de ADN/veterinariaRESUMEN
BACKGROUND: Newcastle disease (ND) is one of the most deadly diseases of poultry around the globe. The disease is endemic in Pakistan and recurrent outbreaks are being reported regularly in wild captive, rural and commercial poultry flocks. Though, efforts have been made to characterize the causative agent in some of parts of the country, the genetic nature of strains circulating throughout Pakistan is currently lacking. MATERIAL AND METHODS: To ascertain the genetics of NDV, 452 blood samples were collected from 113 flocks, originating from all the provinces of Pakistan, showing high mortality (30-80%). The samples represented domesticated poultry (broiler, layer and rural) as well as wild captive birds (pigeons, turkeys, pheasants and peacock). Samples were screened with real-time PCR for both matrix and fusion genes (1792 bp), positive samples were subjected to amplification of full fusion gene and subsequent sequencing and phylogenetic analysis. RESULTS: The deduced amino acid sequence of the fusion protein cleavage site indicated the presence of motif (112RK/RQRR↓F117) typical for velogenic strains of NDV. Phylogenetic analysis of hypervariable region of the fusion gene indicated that all the isolates belong to lineage 5 of NDV except isolates collected from Khyber Pakhtunkhwa (KPK) province. A higher resolution of the phylogenetic analysis of lineage 5 showed the distribution of Pakistani NDV strains to 5b. However, the isolates from KPK belonged to lineage 4c; the first report of such lineage from this province. CONCLUSIONS: Taken together, data indicated the prevalence of multiple lineages of NDV in different poultry population including wild captive birds. Such understanding is crucial to underpin the nature of circulating strains of NDV, their potential for interspecies transmission and disease diagnosis and control strategies.
Asunto(s)
Variación Genética , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , Animales , Aves , Análisis por Conglomerados , Genotipo , Epidemiología Molecular , Datos de Secuencia Molecular , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Pakistán/epidemiología , Filogenia , Aves de Corral , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales de Fusión/genéticaRESUMEN
Porcine bocaviruses (PoBoVs) are small linear ssDNA viruses belonging to the genus bocavirus in the family Parvoviridae. The genome encodes four proteins-the non-structural protein 1 (NS1), the NP1 protein (unknown function) and the two structural proteins VP1 and VP2. In recent years, a number of different highly divergent PoBoV species have been discovered. PoBoVs have been shown to be present in pig populations in Europe, Asia and in the United States of America. In this study, we present the first data of the presence of PoBoV in Africa, specifically in Uganda. A PCR targeting a PoBoV species that have previously been detected in both Sweden and China was used to screen 95 serum samples from domestic pigs in Uganda. Two pigs were found to be positive for this specific PoBoV and the complete coding region was amplified from one of these samples. The amino acid sequence comparison of all these proteins showed a high identity (98-99 %) to the published Chinese sequences (strains: H18 and SX) belonging to the same PoBoV species. The same was true for the Swedish sequences from the same species. To the other PoBoV species the divergence was higher and only a 28-43 % protein sequence identity was seen comparing the different proteins.
Asunto(s)
Bocavirus/clasificación , Bocavirus/aislamiento & purificación , Infecciones por Parvoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Bocavirus/genética , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Datos de Secuencia Molecular , Infecciones por Parvoviridae/virología , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Suero/virología , Sus scrofa , Porcinos , UgandaRESUMEN
BACKGROUND: Newcastle disease virus (NDV) causes severe and economically important disease in poultry around the globe. None of NDV strains in Pakistan have been completely characterized and the role of rural poultry in harbouring NDV is unclear. Since they have a very important role for long-term circulation of the virus, samples were collected from apparently healthy backyard poultry (BYP) flocks. These samples were biologically analyzed using mean death time (MDT) and intracerebral pathogenicity index (ICPI), whereas genotypically characterized by the real-time PCRs coupled with sequencing of the complete genome. FINDINGS: Despite of being non-pathogenic for BYP, the isolate exhibited MDT of 49.6 h in embryonated chicken eggs and an ICPI value of 1.5. The F gene based real-time PCR was positive, whereas M-gene based was negative due to substantial changes in the probe-binding site. The entire genome of the isolate was found to be 15192 nucleotides long and encodes for six genes with an order of 3'-NP-P-M-F-HN-L-5'. The F protein cleavage site, an indicative of pathogenicity, was 112RRQKRF117. Complete genome comparison indicated that the RNA dependent RNA polymerase gene was the most and the phosphoprotein was least conserved gene, among all the genes. The isolate showed an Y526Q substitution in the HN protein, which determines neuraminidase receptor binding and fusion activity of NDV. Phylogenetic analysis, based on F and HN genes, classified this isolate into genotype VII, a predominant genotype responsible for ND outbreaks in Asian countries. However, it clustered well apart from other isolates in this genotype to be considered a new subgenotype (VII-f). CONCLUSIONS: These results revealed that this isolate was similar to virulent strains of NDV and was avirulent in BYP either due to resistance of local breeds or due to other factors such as substantial mutations in the HN protein. Furthermore, we have characterized the first isolate of NDV, which could act as domestic reference strain and could help in development and selection of appropriate strain of NDV for vaccine in the country.
Asunto(s)
Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Aves de Corral/virología , ARN Viral/genética , Animales , Embrión de Pollo , Análisis por Conglomerados , Secuencia Conservada , Genoma Viral , Genotipo , Datos de Secuencia Molecular , Enfermedad de Newcastle/mortalidad , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Pakistán , Filogenia , Análisis de Secuencia de ADN , Análisis de Supervivencia , Proteínas Virales/genéticaRESUMEN
BACKGROUND: Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) are small, single-stranded circular DNA viruses belonging to the Anelloviridae family. Available studies clearly show that both viruses are widely distributed in the pig populations in America, Europe and Asia, although the impact of the infection is still unclear. Currently, the situation in domestic pig populations on the African continent is not known. Therefore, the aim of this study was to investigate the possible presence of the two viruses in domestic pigs in Uganda, and describe the phylogenetic relationships to those in the rest of the world. RESULTS: Ninety-five serum samples from six districts in Uganda were used, and PCR using TTSuV1 and 2 specific primers for the UTR region was run for viral nucleic acid detection. The positive samples were sequenced, and phylogenetic analyses performed in order to compare the Ugandan sequences with sequences from other parts of the world. The prevalence of TTSuV1 and 2 in the selected domestic pigs were estimated at 16.8% and 48.4% respectively, with co-infection found in 13.7%. The sequence identity was 90-100% between the Ugandan TTSuV1; and 63-100% between the Ugandan TTSuV2 sequences. CONCLUSION: This is the first report on the presence of TTSuV1 and 2 in domestic pigs in Uganda. These results highlight the importance of screening for emerging viruses given the globalisation of human activities.
Asunto(s)
Infecciones por Virus ADN/veterinaria , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Torque teno virus/clasificación , Torque teno virus/aislamiento & purificación , Animales , Análisis por Conglomerados , Cartilla de ADN/genética , Infecciones por Virus ADN/diagnóstico , Infecciones por Virus ADN/virología , ADN Viral/química , ADN Viral/genética , ADN Viral/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Suero/virología , Porcinos , Torque teno virus/genética , UgandaRESUMEN
BACKGROUND: As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. RESULTS: Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C-like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. CONCLUSIONS: Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.
Asunto(s)
Genómica/métodos , Parvovirus Porcino/clasificación , Parvovirus Porcino/genética , Porcinos , Torque teno virus/clasificación , Torque teno virus/genética , Animales , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Genoma Viral , Filogenia , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Uganda/epidemiologíaRESUMEN
Newcastle disease virus (NDV) infects wild and domestic birds but causes contagious and lethal disease in domestic poultry. ND is currently endemic in Pakistan, but no complete genome sequence of a Pakistani NDV isolate has been reported. An NDV strain isolated from a commercial poultry farm was completely sequenced. Phylogenetic analysis revealed that the isolate is closely related to genotype VII and, more specifically, to subgenotype VIIb, yet with substantial enough differences to be regarded as new subgenotype (VIIf). These findings provide insight into the genetic nature of NDV circulating in Pakistan and are useful for both laboratory diagnosis and vaccine development for NDV.
Asunto(s)
Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , ARN Viral/genética , Animales , Análisis por Conglomerados , Genotipo , Datos de Secuencia Molecular , Pakistán , Filogenia , Aves de Corral , Análisis de Secuencia de ADN , Homología de SecuenciaRESUMEN
Increasing amounts of data indicate that bats harbor a higher viral diversity relative to other mammalian orders, and they have been recognized as potential reservoirs for pathogenic viruses, such as the Hendra, Nipah, Marburg, and SARS-CoV viruses. Here, we present the first viral metagenomic analysis of Pipistrellus pygmaeus from Uppsala, Sweden. Total RNA was extracted from the saliva and feces of individual bats and analyzed using Illumina sequencing. The results identified sequences related to 51 different viral families, including vertebrate, invertebrate, and plant viruses. These viral families include Coronaviridae, Picornaviridae, Dicistroviridae, Astroviridae, Hepeviridae, Reoviridae, Botourmiaviridae, Lispviridae, Totiviridae, Botoumiaviridae, Parvoviridae, Retroviridae, Adenoviridae, and Partitiviridae, as well as different unclassified viruses. We further characterized three near full-length genome sequences of bat coronaviruses. A phylogenetic analysis showed that these belonged to alphacoronaviruses with the closest similarity (78-99% at the protein level) to Danish and Finnish bat coronaviruses detected in Pipistrellus and Myotis bats. In addition, the full-length and the near full-length genomes of picornavirus were characterized. These showed the closest similarity (88-94% at the protein level) to bat picornaviruses identified in Chinese bats. Altogether, the results of this study show that Swedish Pipistrellus bats harbor a great diversity of viruses, some of which are closely related to mammalian viruses. This study expands our knowledge on the bat population virome and improves our understanding of the evolution and transmission of viruses among bats and to other species.
Asunto(s)
Quirópteros , Picornaviridae , Virus de Plantas , Virus ARN , Animales , Genoma Viral , Humanos , Mamíferos , Filogenia , Picornaviridae/genética , Virus de Plantas/genética , Virus ARN/genética , Suecia , ViromaRESUMEN
Bats are reservoirs for many different viruses, including some that can be transmitted to and cause disease in humans and/or animals. However, less is known about the bat-borne viruses circulating in Northern European countries such as in Sweden. In this study, saliva from Myotis brandtii bats, collected from south-central Sweden, was analyzed for viruses. The metagenomic analysis identified viral sequences belonging to different viral families, including, e.g., Nairoviridae, Retroviridae, Poxviridae, Herpesviridae and Siphoviridae. Interestingly, through the data analysis, the near-complete genome of Issyk-Kul virus (ISKV), a zoonotic virus within the Nairoviridae family, was obtained, showing 95-99% protein sequence identity to previously described ISKVs. This virus is believed to infect humans via an intermediate tick host or through contact with bat excrete. ISKV has previously been found in bats in Europe, but not previously in the Nordic region. In addition, near full-length genomes of two novel viruses belonging to Picornavirales order and Tymoviridae family were characterized. Taken together, our study has not only identified novel viruses, but also the presence of a zoonotic virus not previously known to circulate in this region. Thus, the results from these types of studies can help us to better understand the diversity of viruses circulating in bat populations, as well as identify viruses with zoonotic potential that could possibly be transmitted to humans.