Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 43(6): 3023-3035, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37130995

RESUMEN

Growing evidence indicates that the pathological alpha-synuclein (α-syn) aggregation in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) starts at the synapses. Physiologic α-syn is involved in regulating neurotransmitter release by binding to the SNARE complex protein VAMP-2 on synaptic vesicles. However, in which way the SNARE complex formation is affected by α-syn pathology remains unclear. In this study, primary cortical neurons were exposed to either α-syn monomers or preformed fibrils (PFFs) for different time points and the effect on SNARE protein distribution was analyzed with a novel proximity ligation assay (PLA). Short-term exposure to monomers or PFFs for 24 h increased the co-localization of VAMP-2 and syntaxin-1, but reduced the co-localization of SNAP-25 and syntaxin-1, indicating a direct effect of the added α-syn on SNARE protein distribution. Long-term exposure to α-syn PFFs for 7 d reduced VAMP-2 and SNAP-25 co-localization, although there was only a modest induction of ser129 phosphorylated (pS129) α-syn. Similarly, exposure to extracellular vesicles collected from astrocytes treated with α-syn PFFs for 7 d influenced VAMP-2 and SNAP-25 co-localization despite only low levels of pS129 α-syn being formed. Taken together, our results demonstrate that different α-syn proteoforms have the potential to alter the distribution of SNARE proteins at the synapse.


Asunto(s)
Proteína 2 de Membrana Asociada a Vesículas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas SNARE , Neuronas/metabolismo , Proteínas Qa-SNARE
2.
Neurobiol Dis ; 161: 105543, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737044

RESUMEN

A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.


Asunto(s)
Anticuerpos Monoclonales , Enfermedad de Parkinson , Sinucleinopatías , Animales , Anticuerpos Monoclonales/uso terapéutico , Humanos , Longevidad , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Sinucleinopatías/terapia , alfa-Sinucleína/metabolismo
3.
J Neuroinflammation ; 18(1): 124, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082772

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by brain accumulation of aggregated amyloid-beta (Aß) and alpha-synuclein (αSYN), respectively. In order to develop effective therapies, it is crucial to understand how the Aß/αSYN aggregates can be cleared. Compelling data indicate that neuroinflammatory cells, including astrocytes and microglia, play a central role in the pathogenesis of AD and PD. However, how the interplay between the two cell types affects their clearing capacity and consequently the disease progression remains unclear. METHODS: The aim of the present study was to investigate in which way glial crosstalk influences αSYN and Aß pathology, focusing on accumulation and degradation. For this purpose, human-induced pluripotent cell (hiPSC)-derived astrocytes and microglia were exposed to sonicated fibrils of αSYN or Aß and analyzed over time. The capacity of the two cell types to clear extracellular and intracellular protein aggregates when either cultured separately or in co-culture was studied using immunocytochemistry and ELISA. Moreover, the capacity of cells to interact with and process protein aggregates was tracked using time-lapse microscopy and a customized "close-culture" chamber, in which the apical surfaces of astrocyte and microglia monocultures were separated by a <1 mm space. RESULTS: Our data show that intracellular deposits of αSYN and Aß are significantly reduced in co-cultures of astrocytes and microglia, compared to monocultures of either cell type. Analysis of conditioned medium and imaging data from the "close-culture" chamber experiments indicate that astrocytes secrete a high proportion of their internalized protein aggregates, while microglia do not. Moreover, co-cultured astrocytes and microglia are in constant contact with each other via tunneling nanotubes and other membrane structures. Notably, our live cell imaging data demonstrate that microglia, when attached to the cell membrane of an astrocyte, can attract and clear intracellular protein deposits from the astrocyte. CONCLUSIONS: Taken together, our data demonstrate the importance of astrocyte and microglia interactions in Aß/αSYN clearance, highlighting the relevance of glial cellular crosstalk in the progression of AD- and PD-related brain pathology.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Microglía/metabolismo , Microglía/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Estructuras de la Membrana Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Humanos , Células Madre Pluripotentes Inducidas , Microscopía Confocal , Nanotubos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteolisis
4.
J Neurosci Res ; 99(10): 2525-2539, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34292621

RESUMEN

Aggregation of alpha-synuclein (α-syn) into Lewy bodies and Lewy neurites is a pathological hallmark in the Parkinson´s disease (PD) brain. The formation of α-syn oligomers is believed to be an early pathogenic event and the A30P mutation in the gene encoding α-syn, causing familial PD, has been shown to cause an accelerated oligomerization. Due to the problem of preserving antigen conformation on tissue surfaces, α-syn oligomers are difficult to detect ex vivo using conventional immunohistochemistry with oligomer-selective antibodies. Herein, we have instead employed the previously reported α-syn oligomer proximity ligation assay (ASO-PLA), along with a wide variety of biochemical assays, to discern the pathological progression of α-syn oligomers and their impact on the dopaminergic system in male and female (Thy-1)-h[A30P]α-syn transgenic (A30P-tg) mice. Our results reveal a previously undetected abundance of α-syn oligomers in midbrain of young mice, whereas phosphorylated (pS129) and proteinase k-resistant α-syn species were observed to a larger extent in aged mice. Although we did not detect loss of dopaminergic neurons in A30P-tg mice, a dysregulation in the monoaminergic system was recorded in older mice. Taken together, ASO-PLA should be a useful method for the detection of early changes in α-syn aggregation on brain tissue, from experimental mouse models in addition to post mortem PD cases.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Antígenos Thy-1/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/patología , Dopamina/genética , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Antígenos Thy-1/genética , alfa-Sinucleína/genética
5.
J Neuroinflammation ; 17(1): 119, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299492

RESUMEN

BACKGROUND: Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson's disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. METHODS: To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. RESULTS: Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4+ T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. CONCLUSIONS: In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Anciano , Anciano de 80 o más Años , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/patología , Astrocitos/inmunología , Astrocitos/patología , Encéfalo/inmunología , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Masculino , Microglía/inmunología , Microglía/patología , Persona de Mediana Edad , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología
6.
Proc Natl Acad Sci U S A ; 113(48): 13833-13838, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849619

RESUMEN

The distal colon functions as a bioreactor and harbors an enormous amount of bacteria in a mutualistic relationship with the host. The microbiota have to be kept at a safe distance to prevent inflammation, something that is achieved by a dense inner mucus layer that lines the epithelial cells. The large polymeric nets made up by the heavily O-glycosylated MUC2 mucin forms this physical barrier. Proteomic analyses of mucus have identified the lectin-like protein ZG16 (zymogen granulae protein 16) as an abundant mucus component. To elucidate the function of ZG16, we generated recombinant ZG16 and studied Zg16-/- mice. ZG16 bound to and aggregated Gram-positive bacteria via binding to the bacterial cell wall peptidoglycan. Zg16-/- mice have a distal colon mucus layer with normal thickness, but with bacteria closer to the epithelium. Using distal colon explants mounted in a horizontal perfusion chamber we demonstrated that treatment of bacteria with recombinant ZG16 hindered bacterial penetration into the mucus. The inner colon mucus of Zg16-/- animals had a higher load of Gram-positive bacteria and showed bacteria with higher motility in the mucus close to the host epithelium compared with cohoused littermate Zg16+/+ The more penetrable Zg16-/- mucus allowed Gram-positive bacteria to translocate to systemic tissues. Viable bacteria were found in spleen and were associated with increased abdominal fat pad mass in Zg16-/- animals. The function of ZG16 reveals a mechanism for keeping bacteria further away from the host colon epithelium.


Asunto(s)
Bacterias Grampositivas/genética , Lectinas/genética , Proteínas de la Membrana/genética , Proteómica , Animales , Colon/metabolismo , Colon/microbiología , Sistema Digestivo/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glicosilación , Bacterias Grampositivas/metabolismo , Interacciones Huésped-Patógeno/genética , Lectinas/metabolismo , Ratones , Ratones Noqueados , Moco/metabolismo , Moco/microbiología , Simbiosis/genética
7.
J Neurosci ; 37(49): 11835-11853, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29089438

RESUMEN

Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance.SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Nanotubos , alfa-Sinucleína/análisis , alfa-Sinucleína/metabolismo , Astrocitos/ultraestructura , Comunicación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/química , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Humanos , alfa-Sinucleína/ultraestructura
8.
Cell Mol Neurobiol ; 38(8): 1539-1550, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30288631

RESUMEN

In Parkinson's disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1-2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.


Asunto(s)
Vesículas Extracelulares/metabolismo , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Exosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Proteínas tau/metabolismo
9.
Mol Cell Neurosci ; 82: 143-156, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450268

RESUMEN

The presence of Lewy bodies, mainly consisting of aggregated α-synuclein, is a pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The α-synuclein inclusions are predominantly found in neurons, but also appear frequently in astrocytes. However, the pathological significance of α-synuclein inclusions in astrocytes and the capacity of glial cells to clear toxic α-synuclein species remain unknown. In the present study we investigated uptake, degradation and toxic effects of oligomeric α-synuclein in a co-culture system of primary neurons, astrocytes and oligodendrocytes. Alpha-synuclein oligomers were found to co-localize with the glial cells and the astrocytes were found to internalize particularly large amounts of the protein. Following ingestion, the astrocytes started to degrade the oligomers via the lysosomal pathway but, due to incomplete digestion, large intracellular deposits remained. Moreover, the astrocytes displayed mitochondrial abnormalities. Taken together, our data indicate that astrocytes play an important role in the clearance of toxic α-synuclein species from the extracellular space. However, when their degrading capacity is overburdened, α-synuclein deposits can persist and result in detrimental cellular processes.


Asunto(s)
Astrocitos/metabolismo , Mitocondrias/metabolismo , Oligodendroglía/metabolismo , alfa-Sinucleína/metabolismo , Animales , Técnicas de Cocultivo/métodos , Citoplasma/metabolismo , Espacio Intracelular/metabolismo , Cuerpos de Lewy/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo
10.
Immunol Rev ; 260(1): 8-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24942678

RESUMEN

The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.


Asunto(s)
Enterocitos/fisiología , Tracto Gastrointestinal/inmunología , Células Caliciformes/fisiología , Mucinas/fisiología , Membrana Mucosa/inmunología , Moco/fisiología , Animales , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Sistema Inmunológico , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Moco/química , Moco/microbiología , Ganglios Linfáticos Agregados/inmunología
11.
J Neuroinflammation ; 14(1): 241, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29228971

RESUMEN

BACKGROUND: Due to its neurotoxic properties, oligomeric alpha-synuclein (α-syn) has been suggested as an attractive target for passive immunization against Parkinson's disease (PD). In mouse models of PD, antibody treatment has been shown to lower the levels of pathogenic α-syn species, including oligomers, although the mechanisms of action remain unknown. We have previously shown that astrocytes rapidly engulf α-syn oligomers that are intracellularly stored, rather than degraded, resulting in impaired mitochondria. METHODS: The aim of the present study was to investigate if the accumulation of α-syn in astrocytes can be affected by α-syn oligomer-selective antibodies. Co-cultures of astrocytes, neurons, and oligodendrocytes were derived from embryonic mouse cortex and exposed to α-syn oligomers or oligomers pre-incubated with oligomer-selective antibodies. RESULTS: In the presence of antibodies, the astrocytes displayed an increased clearance of the exogenously added α-syn, and consequently, the α-syn accumulation in the culture was markedly reduced. Moreover, the addition of antibodies rescued the astrocytes from the oligomer-induced mitochondrial impairment. CONCLUSIONS: Our results demonstrate that oligomer-selective antibodies can prevent α-syn accumulation and mitochondrial dysfunction in cultured astrocytes.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Astrocitos/metabolismo , Mitocondrias/efectos de los fármacos , alfa-Sinucleína/antagonistas & inhibidores , Animales , Cuerpos de Inclusión , Espacio Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Enfermedad de Parkinson
12.
Cell Mol Neurobiol ; 37(1): 121-131, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26961542

RESUMEN

Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson's disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen-antibody complexes.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Espacio Extracelular/metabolismo , Receptores de IgG/fisiología , alfa-Sinucleína/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Ratones , Ratones Transgénicos
13.
Cell Mol Neurobiol ; 37(7): 1217-1226, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28028735

RESUMEN

Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal deposits observed in Parkinson's disease and dementia with Lewy bodies. The objective of the study was to identify surface-exposed epitopes of alpha-synuclein in vitro and in vivo formed aggregates. Polyclonal immunoglobulin Y antibodies were raised against short linear peptides of the alpha-synuclein molecule. An epitope in the N-terminal region (1-10) and all C-terminal epitopes (90-140) were found to be exposed in an indirect enzyme-linked immunosorbent assay (ELISA) using recombinant monomeric, oligomeric, and fibrillar alpha-synuclein. In a phospholipid ELISA, the N-terminus and mid-region of alpha-synuclein (i.e., 1-90) were associated with phosphatidylserine and thus occluded from antibody binding. The antibodies that reacted most strongly with epitopes in the in vitro aggregates (i.e., 1-10 and epitopes between positions 90-140) also labeled alpha-synuclein inclusions in brains from transgenic (Thy-1)-h[A30P] alpha-synuclein mice and Lewy bodies and Lewy neurites in brains of patients with alpha-synucleinopathies. However, differences in reactivity were observed with the C-terminal antibodies when brain tissue from human and transgenic mice was compared. Taken together, the study shows that although similar epitopes are exposed in both in vitro and in vivo formed alpha-synuclein inclusions, structural heterogeneity can be observed between different molecular species.


Asunto(s)
Mapeo Cromosómico/métodos , Epítopos/genética , Epítopos/metabolismo , Agregado de Proteínas/fisiología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad
14.
Biochem Biophys Res Commun ; 464(1): 336-41, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26129771

RESUMEN

The oxidative stress-related reactive aldehydes 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) have been shown to promote formation of α-synuclein oligomers in vitro. However, the changes in secondary structure of α-synuclein and the kinetics of the oligomerization process are not known and were the focus of this study. Size exclusion chromatography showed that after 1 h of incubation, HNE induced the formation of an oligomeric α-synuclein peak with a molecular weight of about ∼2000 kDa, which coincided with a decreasing ∼50 kDa monomeric peak. With prolonged incubation (up to 24 h) the oligomeric peak became the dominating molecular species. In contrast, in the presence of ONE, a ∼2000 oligomeric peak was exclusively observed after 15 min of incubation and this peak remained constant with prolonged incubation. Western blot analysis of HNE-induced α-synuclein oligomers showed the presence of monomers (15 kDa), SDS-resistant low molecular (30-160 kDa) and high molecular weight oligomers (≥260 kDa), indicating that the oligomers consisted of both covalent and non-covalent protein. In contrast, ONE-induced α-synuclein oligomers only migrated as covalent cross-linked high molecular-weight material (≥300 kDa). Both circular dichroism (CD) and Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the formation of HNE- and ONE-induced oligomers coincided with a spectral change from random coil to ß-sheet. However, ONE-induced α-synuclein oligomers exhibited a slightly higher degree of ß-sheet. Taken together, our results indicate that both HNE and ONE induce a change from random coil to ß-sheet structure that coincides with the formation of α-synuclein oligomers; albeit through different kinetic pathways depending on the degree of cross-linking.


Asunto(s)
Aldehídos/química , alfa-Sinucleína/química , Cromatografía en Gel , Dicroismo Circular , Humanos , Cinética , Peso Molecular , Oxidación-Reducción , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química
15.
Neurobiol Dis ; 69: 134-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24851801

RESUMEN

Several lines of evidence suggest that accumulation of aggregated alpha-synuclein (α-synuclein) in the central nervous system (CNS) is an early pathogenic event in Parkinson's disease and other Lewy body disorders. In recent years, animal studies have indicated immunotherapy with antibodies directed against α-synuclein as a promising novel treatment strategy. Since large α-synuclein oligomers, or protofibrils, have been demonstrated to possess pronounced cytotoxic properties, such species should be particularly attractive as therapeutic targets. In support of this, (Thy-1)-h[A30P] α-synuclein transgenic mice with motor dysfunction symptoms were found to display increased levels of α-synuclein protofibrils in the CNS. An α-synuclein protofibril-selective monoclonal antibody (mAb47) was evaluated in this α-synuclein transgenic mouse model. As measured by ELISA, 14month old mice treated for 14weeks with weekly intraperitoneal injections of mAb47 displayed significantly lower levels of both soluble and membrane-associated protofibrils in the spinal cord. Besides the lower levels of pathogenic α-synuclein demonstrated, a reduction of motor dysfunction in transgenic mice upon peripheral administration of mAb47 was indicated. Thus, immunotherapy with antibodies targeting toxic α-synuclein species holds promise as a future disease-modifying treatment in Parkinson's disease and related disorders.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inmunización Pasiva , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/terapia , alfa-Sinucleína/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Encéfalo/inmunología , Encéfalo/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones Transgénicos , Actividad Motora/fisiología , Mutación , Trastornos Parkinsonianos/inmunología , Índice de Severidad de la Enfermedad , Médula Espinal/inmunología , Médula Espinal/patología , alfa-Sinucleína/genética
16.
J Neurosci ; 32(34): 11750-62, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915117

RESUMEN

Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.


Asunto(s)
Potenciación a Largo Plazo/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , alfa-Sinucleína/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Biofisica , Biotinilación , Línea Celular Tumoral , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Líquido Extracelular/metabolismo , Hipocampo/citología , Humanos , Insulina/farmacología , L-Lactato Deshidrogenasa/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Neuroblastoma/patología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Valina/análogos & derivados , Valina/farmacología , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/química
17.
J Neurochem ; 126(1): 131-44, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23363402

RESUMEN

Inclusions of intraneuronal alpha-synuclein (α-synuclein) can be detected in brains of patients with Parkinson's disease and dementia with Lewy bodies. The aggregation of α-synuclein is a central feature of the disease pathogenesis. Among the different α-synuclein species, large oligomers/protofibrils have particular neurotoxic properties and should therefore be suitable as both therapeutic and diagnostic targets. Two monoclonal antibodies, mAb38F and mAb38E2, with high affinity and strong selectivity for large α-synuclein oligomers were generated. These antibodies, which do not bind amyloid-beta or tau, recognize Lewy body pathology in brains from patients with Parkinson's disease and dementia with Lewy bodies and detect pathology earlier in α-synuclein transgenic mice than linear epitope antibodies. An oligomer-selective sandwich ELISA, based on mAb38F, was set up to analyze brain extracts of the transgenic mice. The overall levels of α-synuclein oligomers/protofibrils were found to increase with age in these mice, although the levels displayed a large interindividual variation. Upon subcellular fractionation, higher levels of α-synuclein oligomers/protofibrils could be detected in the endoplasmic reticulum around the age when behavioral disturbances develop. In summary, our novel oligomer-selective α-synuclein antibodies recognize relevant pathology and should be important tools to further explore the pathogenic mechanisms in Lewy body disorders. Moreover, they could be potential candidates both for immunotherapy and as reagents in an assay to assess a potential disease biomarker.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Encéfalo/patología , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/patología , alfa-Sinucleína/genética , alfa-Sinucleína/inmunología , Animales , Western Blotting , ADN Complementario/genética , Ensayo de Inmunoadsorción Enzimática , Epítopos , Formiatos/química , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Mutación/genética , Mutación/fisiología , Fracciones Subcelulares/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 305(5): G348-56, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23832517

RESUMEN

The mucus that protects the surface of the gastrointestinal tract is rich in specialized O-glycoproteins called mucins, but little is known about other mucus proteins or their variability along the gastrointestinal tract. To ensure that only mucus was analyzed, we combined collection from explant tissues mounted in perfusion chambers, liquid sample preparation, single-shot mass spectrometry, and specific bioinformatics tools, to characterize the proteome of the murine mucus from stomach to distal colon. With our approach, we identified ∼1,300 proteins in the mucus. We found no differences in the protein composition or abundance between sexes, but there were clear differences in mucus along the tract. Noticeably, mucus from duodenum showed similarities to the stomach, probably reflecting the normal distal transport. Qualitatively, there were, however, fewer differences than might had been anticipated, suggesting a relatively stable core proteome (∼80% of the total proteins identified). Quantitatively, we found significant differences (∼40% of the proteins) that could reflect mucus specialization throughout the gastrointestinal tract. Hierarchical clustering pinpointed a number of such proteins that correlated with Muc2 (e.g., Clca1, Zg16, Klk1). This study provides a deeper knowledge of the gastrointestinal mucus proteome that will be important in further understanding this poorly studied mucosal protection system.


Asunto(s)
Colon/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Mucina 5AC/metabolismo , Mucina 2/metabolismo , Proteómica , Animales , Biotinilación , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Análisis por Conglomerados , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Moco/metabolismo , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
19.
Front Mol Biosci ; 10: 1080112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793785

RESUMEN

Introduction: Parkinson's disease and type 2 diabetes have both elements of local amyloid depositions in their pathogenesis. In Parkinson's disease, alpha-synuclein (aSyn) forms insoluble Lewy bodies and Lewy neurites in brain neurons, and in type 2 diabetes, islet amyloid polypeptide (IAPP) comprises the amyloid in the islets of Langerhans. In this study, we assessed the interaction between aSyn and IAPP in human pancreatic tissues, both ex vivo and in vitro. Material and Methods: The antibody-based detection techniques, proximity ligation assay (PLA), and immuno-TEM were used for co-localization studies. Bifluorescence complementation (BiFC) was used for interaction studies between IAPP and aSyn in HEK 293 cells. The Thioflavin T assay was used for studies of cross-seeding between IAPP and aSyn. ASyn was downregulated with siRNA, and insulin secretion was monitored using TIRF microscopy. Results: We demonstrate intracellular co-localization of aSyn with IAPP, while aSyn is absent in the extracellular amyloid deposits. ASyn reactivity is present in the secretory granules of ß-cells and some α-cells in human islets. The BiFC-expression of aSyn/aSyn and IAPP/IAPP in HEK293 cells resulted in 29.3% and 19.7% fluorescent cells, respectively, while aSyn/IAPP co-expression resulted in ∼10% fluorescent cells. Preformed aSyn fibrils seeded IAPP fibril formation in vitro, but adding preformed IAPP seeds to aSyn did not change aSyn fibrillation. In addition, mixing monomeric aSyn with monomeric IAPP did not affect IAPP fibril formation. Finally, the knockdown of endogenous aSyn did not affect ß cell function or viability, nor did overexpression of aSyn affect ß cell viability. Discussion: Despite the proximity of aSyn and IAPP in ß-cells and the detected capacity of preformed aSyn fibrils to seed IAPP in vitro, it is still an open question if an interaction between the two molecules is of pathogenic significance for type 2 diabetes.

20.
Cell Mol Life Sci ; 68(22): 3635-41, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21947475

RESUMEN

In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.


Asunto(s)
Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Animales , Enterocitos/química , Enterocitos/citología , Enterocitos/metabolismo , Humanos , Inmunidad Mucosa/inmunología , Mucosa Intestinal/microbiología , Intestinos/anatomía & histología , Intestinos/microbiología , Intestinos/fisiología , Modelos Moleculares , Mucinas/química , Mucinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA