Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456900

RESUMEN

Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas del Tejido Nervioso , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Fenotipo
2.
Pharmacol Res ; 169: 105492, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019978

RESUMEN

Natural cannabidiol ((-)-CBD) and its derivatives have increased interest for medicinal applications due to their broad biological activity spectrum, including targeting of the cannabinoid receptors type 1 (CB1R) and type 2 (CB2R). Herein, we synthesized the (+)-enantiomer of CBD and its derivative (+)-CBD hydroxypentylester ((+)-CBD-HPE) that showed enhanced CB1R and CB2R binding and functional activities compared to their respective (-) enantiomers. (+)-CBD-HPE Ki values for CB1R and CB2R were 3.1 ± 1.1 and 0.8 ± 0.1 nM respectively acting as CB1R antagonist and CB2R agonist. We further tested the capacity of (+)-CBD-HPE to prevent hyperglycemia and its complications in a mouse model. (+)-CBD-HPE significantly reduced streptozotocin (STZ)-induced hyperglycemia and glucose intolerance by preserving pancreatic beta cell mass. (+)-CBD-HPE significantly reduced activation of NF-κB by phosphorylation by 15% compared to STZ-vehicle mice, and CD3+ T cell infiltration into the islets was avoided. Consequently, (+)-CBD-HPE prevented STZ-induced apoptosis in islets. STZ induced inflammation and kidney damage, visualized by a significant increase in plasma proinflammatory cytokines, creatinine, and BUN. Treatment with (+)-CBD-HPE significantly reduced 2.5-fold plasma IFN-γ and increased 3-fold IL-5 levels compared to STZ-treated mice, without altering IL-18. (+)-CBD-HPE also significantly reduced creatinine and BUN levels to those comparable to healthy controls. At the macroscopy level, (+)-CBD-HPE prevented STZ-induced lesions in the kidney and voided renal fibrosis and CD3+ T cell infiltration. Thus, (+)-enantiomers of CBD, particularly (+)-CBD-HPE, have a promising potential due to their pharmacological profile and synthesis, potentially to be used for metabolic and immune-related disorders.


Asunto(s)
Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/uso terapéutico , Nefropatías Diabéticas/prevención & control , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Animales , Cannabinoides/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/patología , Riñón/efectos de los fármacos , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/patología
4.
Eur J Neurosci ; 37(1): 105-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23033907

RESUMEN

Diet-induced obesity produces changes in endocannabinoid signaling (ECS), influencing the regulation of energy homeostasis. Recently, we demonstrated that, in high-fat-diet-fed rats, blockade of CB1 receptor by AM251 not only reduced body weight but also increased adult neurogenesis in the hippocampus, suggesting an influence of diet on hippocampal cannabinoid function. To further explore the role of hippocampal ECS in high-fat-diet-induced obesity, we investigated whether the immunohistochemical expression of the enzymes that produce (diacylglycerol lipase alpha and N-acyl phosphatidylethanolamine phospholipase D) and degrade (monoacylglycerol lipase and fatty acid amino hydrolase) endocannabinoids may be altered in the hippocampus of AM251 (3 mg/kg)-treated rats fed three different diets: standard diet (normal chow), high-carbohydrate diet (70% carbohydrate) and high-fat diet (60% fat). Results indicated that AM251 reduced caloric intake and body weight gain, and induced a modulation of the expression of ECS-related proteins in the hippocampus of animals exposed to hypercaloric diets. These effects were differentially restricted to either the 2-arachinodoyl glycerol or anandamide signaling pathways, in a diet-dependent manner. AM251-treated rats fed the high-carbohydrate diet showed a reduction of the diacylglycerol lipase alpha : monoacylglycerol lipase ratio, whereas AM251-treated rats fed the high-fat diet showed a decrease of the N-acyl phosphatidylethanolamine phospholipase D : fatty acid amino hydrolase ratio. These results are consistent with the reduced levels of hippocampal endocannabinoids found after food restriction. Regarding the CB1 expression, AM251 induced specific changes focused in the CA1 stratum pyramidale of high-fat-diet-fed rats. These findings indicated that the cannabinoid antagonist AM251 modulates ECS-related proteins in the rat hippocampus in a diet-specific manner. Overall, these results suggest that the hippocampal ECS participates in the physiological adaptations to different caloric diets.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Dieta Alta en Grasa , Endocannabinoides/metabolismo , Hipocampo/enzimología , Obesidad/enzimología , Piperidinas/farmacología , Pirazoles/farmacología , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Endocannabinoides/farmacología , Hipocampo/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Masculino , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Obesidad/tratamiento farmacológico , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Piperidinas/uso terapéutico , Alcamidas Poliinsaturadas/farmacología , Pirazoles/uso terapéutico , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Aumento de Peso/efectos de los fármacos
5.
Int J Neuropsychopharmacol ; 16(6): 1277-93, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23217608

RESUMEN

The endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG) are modulators of glutamate and γ-aminobutyric acid (GABA), two transmitters involved in cocaine addiction. However, little is known on the effects of cocaine on the enzymes that produce and degrade endocannabinoids. The present work addresses the effects of cocaine self-administration on the immunohistochemical expression of endocannabinoid signalling (ECS)-related proteins in the hippocampus. The study has been performed on two different strains of rats, Lewis (Lew) and Fischer 344 (F344), which are characterized for displaying a differential sensitivity to cocaine, thus making them suitable in the study of vulnerability to drug addiction. Both strains showed differences in the expression of ECS-related proteins in the hippocampus, i.e. Lew rats exhibited lower CB1 expression but higher CB2 expression than F344 rats. After setting similar cocaine self-administration, both strains showed clear differences in the expression of ECS-related proteins, which were differentially restricted to either the 2-AG or anandamide signalling pathways in a self-administration training/drug-dependent manner. The decreases observed in CB1 expression and N-acyl phosphatidylethanolamine phospholipase D:fatty acid amino hydrolase ratio after saline self-administration were enhanced only in cocaine self-administered Lew rats. CB2 expression increase and diacylglycerol lipase α:monoacylglycerol lipase ratio decrease detected after saline self-administration were blocked only in cocaine self-administered F344 rats. These findings indicate that cocaine may regulate hippocampal GABA/glutamate synapses by directly modulating endocannabinoid production/degradation enzymes and that these actions are strain-dependent. This differential response suggests that the endogenous cannabinoid system might contribute to genotype/strain differences on the sensitivity to self-administration training and cocaine addiction.


Asunto(s)
Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Endocannabinoides/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Amidohidrolasas , Animales , Ácidos Araquidónicos , Condicionamiento Operante , Endocannabinoides/genética , Glicéridos , Hipocampo/metabolismo , Lipoproteína Lipasa/metabolismo , Monoacilglicerol Lipasas/metabolismo , Fosfolipasa D/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Autoadministración , Transducción de Señal/fisiología , Especificidad de la Especie , Factores de Tiempo
6.
Addict Biol ; 18(1): 78-87, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23163925

RESUMEN

Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism. Increasing evidence also suggests that OEA may participate in the control of reward-related behaviours. However, direct experimental evidence for the role of the OEA-PPARα receptor interaction in drug-mediated behaviours, such as cocaine-induced behavioural phenotypes, is lacking. The present study explored the role of OEA and its receptor PPARα on the psychomotor and rewarding responsiveness to cocaine using behavioural tests indicative of core components of addiction. We found that acute administration of OEA (1, 5 or 20 mg/kg, i.p.) reduced spontaneous locomotor activity and attenuated psychomotor activation induced by cocaine (20 mg/kg) in C57Bl/6 mice. However, PPARα receptor knockout mice showed normal sensitization, although OEA was capable of reducing behavioural sensitization with fewer efficacies. Furthermore, conditioned place preference and reinstatement to cocaine were intact in these mice. Our results indicate that PPARα receptor does not play a critical, if any, role in mediating short- and long-term psychomotor and rewarding responsiveness to cocaine. However, further research is needed for the identification of the targets of OEA for its inhibitory action on cocaine-mediated responses.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ácidos Oléicos/farmacología , PPAR alfa/fisiología , Análisis de Varianza , Animales , Conducta Adictiva , Cocaína/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Inhibidores de Captación de Dopamina/administración & dosificación , Relación Dosis-Respuesta a Droga , Endocannabinoides , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácidos Oléicos/administración & dosificación , PPAR alfa/agonistas , PPAR alfa/genética , Refuerzo en Psicología , Recompensa
7.
Arch Pharm (Weinheim) ; 346(3): 171-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23371794

RESUMEN

A series of bivalent cannabinoid ligands is proposed. The synthesis of double amides based on the rimonabant structure separated by an alkyl chain and the evaluation of their affinities for cannabinoid receptors are reported. The data of 4d confirmed that a bivalent structure is a suitable scaffold for CB1 cannabinoid receptor binding. The compound 4d was selected for in vitro and in vivo pharmacological evaluations. Moreover, intraperitoneal administration of 4d to food-deprived rats resulted in a dose-dependent inhibition of feeding that was maintained up to 240 min.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/síntesis química , Diseño de Fármacos , Conducta Alimentaria/efectos de los fármacos , Piperidinas/síntesis química , Pirazoles/síntesis química , Receptor Cannabinoide CB1/metabolismo , Animales , Antagonistas de Receptores de Cannabinoides/química , Antagonistas de Receptores de Cannabinoides/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Privación de Alimentos , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Piperidinas/química , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Unión Proteica , Pirazoles/química , Pirazoles/farmacología , Ensayo de Unión Radioligante , Receptor Cannabinoide CB1/genética , Rimonabant , Relación Estructura-Actividad , Transfección
8.
Am J Physiol Endocrinol Metab ; 302(7): E817-30, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22297300

RESUMEN

Enhancement of adiponectin level has been shown to have beneficial effects, including antiobesity, antidiabetic, and hepatoprotective effects. This evidence supports the therapeutic utility of adiponectin in complicated obesity. The present study characterized the in vivo effects of sustained adiponectin release by NP-1, a new class of thiazol derivative that increases adiponectin levels. Acute administration of NP-1 reduced feeding, increased plasma adiponectin, and improved insulin sensitivity without inducing malaise, as revealed by conditioned taste aversion studies. Short-term (7 days) treatment with NP-1 also reduced feeding and body weight gain and increased phosphorylation of AMPK in muscle, a main intracellular effector of adiponectin. NP-1 was also evaluated in diet-induced obesity, and adult male Wistar rats were fed two different types of diet: a standard high-carbohydrate/low-fat diet (SD) and a high-fat diet (HFD). Once obesity was established, animals were treated daily with NP-1 (5 mg/kg) for 14 consecutive days. Chronic NP-1 induced body weight loss and reduction of food intake and resulted in both a marked decrease in liver steatosis and an improvement of biochemical indexes of liver damage in HFD-fed rats. However, a marked induction of tolerance in adiponectin gene transcription and release was observed after chronic NP-1 with respect to the acute actions of this drug. The present results support the role of adiponectin signaling in diet-induced obesity and set in place a potential use of compounds able to induce adiponectin release for the treatment of obesity and nonalcoholic fatty liver, with the limits imposed by the induction of pharmacological tolerance.


Asunto(s)
Adiponectina/metabolismo , Peso Corporal/efectos de los fármacos , Grasas de la Dieta/efectos adversos , Hígado Graso/tratamiento farmacológico , Tiazoles/farmacología , Adiponectina/sangre , Análisis de Varianza , Animales , Reacción de Prevención/efectos de los fármacos , Western Blotting , Línea Celular , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Mioblastos/metabolismo , Enfermedad del Hígado Graso no Alcohólico , ARN/biosíntesis , ARN/genética , ARN/aislamiento & purificación , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Gusto/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
9.
Behav Pharmacol ; 23(5-6): 526-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22785439

RESUMEN

The endocannabinoid (eCB) system is a widespread intercellular signalling mechanism that plays a critical role in body homoeostasis. It is located in key points involved in food intake and energy expenditure, coordinating all the players involved in energy balance. As such, it has come to be seen as an interesting target for the management of diseases characterized by an imbalanced energy homoeostasis, such as obesity and eating disorders. The aetiology of eating disorders and the molecular systems involved are still largely a mystery. Research has focused on brain circuits where the eCB system plays an important role, such as those related to feeding behaviour and the rewarding properties of food. Accordingly, recent findings have suggested a deregulation of the eCB system in eating disorders. At present, cannabinoid agonists are safe and effective tools in the management of diseases in which weight gain is needed, for example cachexia in AIDS patients. However, studies on the potential therapeutic validity of cannabinoids in eating disorders are scarce and inconclusive. Taken together, all these considerations warrant more preclinical and clinical investigations in the role of the eCB system in eating disorders. Eventually, they may provide novel pharmacological approaches for the treatment of these diseases.


Asunto(s)
Estimulantes del Apetito/uso terapéutico , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Trastornos de Alimentación y de la Ingestión de Alimentos/tratamiento farmacológico , Terapia Molecular Dirigida , Neuronas/metabolismo , Receptores de Cannabinoides/metabolismo , Animales , Regulación del Apetito/efectos de los fármacos , Estimulantes del Apetito/farmacología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Antagonistas de Receptores de Cannabinoides/farmacología , Agonismo Inverso de Drogas , Endocannabinoides/agonistas , Endocannabinoides/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Polimorfismo Genético , Receptores de Cannabinoides/química , Receptores de Cannabinoides/genética , Transmisión Sináptica/efectos de los fármacos
10.
Biochem J ; 433(1): 175-85, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20955176

RESUMEN

The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) ß and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of CB1 receptors could work towards restoration of the metabolic adaption imposed by diet.


Asunto(s)
Cannabinoides/metabolismo , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Músculo Esquelético/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Animales , Cannabinoides/biosíntesis , Grasas de la Dieta/administración & dosificación , Ingestión de Energía , PPAR gamma/genética , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Receptor Cannabinoide CB2/genética , Receptores de Adiponectina/genética , Aumento de Peso
11.
Biomed Pharmacother ; 145: 112361, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34872800

RESUMEN

The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies, including autoimmune diseases. However, its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week, following STZ challenge, and euthanized 1 week later. Blood, pancreas, pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice, treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly, Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice, Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-κB and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether, Abn-CBD reduces circulating and intra-islet inflammation, preserving islets, thus delaying the progression of insulitis. Hence, Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Resorcinoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Progresión de la Enfermedad , Femenino , Prueba de Tolerancia a la Glucosa , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Estreptozocina
12.
iScience ; 25(5): 104345, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35602948

RESUMEN

LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE2 levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist-ONO-8130-negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE2/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.

13.
Theranostics ; 11(14): 6983-7004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093866

RESUMEN

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Asunto(s)
Astrocitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliosis/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Adulto , Animales , Supervivencia Celular/efectos de los fármacos , Proteínas Co-Represoras/antagonistas & inhibidores , Dieta Alta en Grasa , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Proteínas del Grupo de Alta Movilidad/antagonistas & inhibidores , Proteínas del Grupo de Alta Movilidad/genética , Histona Demetilasas/antagonistas & inhibidores , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , ARN Interferente Pequeño , RNA-Seq
14.
Horm Behav ; 58(5): 808-19, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20708008

RESUMEN

Maternal deprivation (MD) has numerous outcomes, including modulation of neuroendocrine functions. We previously reported that circulating leptin levels are reduced and hypothalamic cell-turnover is affected during MD, with some of these effects being sexually dimorphic. As leptin modulates the development of hypothalamic circuits involved in metabolic control, we asked whether MD has long-term consequences on body weight, leptin levels and the expression of neuropeptides involved in metabolism. Rats were separated from their mother for 24h starting on postnatal day (PND) 9 and sacrificed at PNDs 13, 35 and 75. In both sexes MD reduced body weight, but only until puberty, while leptin levels were unchanged at PND 35 and significantly reduced at PND 75. Adiponectin levels were also reduced at PND 75 in females, while testosterone levels were reduced in males. At PND 13, MD modulated cell-turnover markers in the hypothalamus of males, but not females and increased nestin, a marker of immature neurons, in both sexes, with males having higher levels than females and a significantly greater rise in response to MD. There was no effect of MD on hypothalamic mRNA levels of the leptin receptor or metabolic neuropeptides or the mRNA levels of leptin and adiponectin in adipose tissue. Thus, MD has long-term effects on the levels of circulating hormones that are not correlated with changes in body weight. Furthermore, these endocrine outcomes are different between males and females, which could be due to the fact that MD may have sexually dimorphic effects on hypothalamic development.


Asunto(s)
Peso Corporal/fisiología , Proliferación Celular , Hormonas/sangre , Hipotálamo/fisiología , Privación Materna , Caracteres Sexuales , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Femenino , Hipotálamo/citología , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leptina/genética , Leptina/metabolismo , Masculino , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
15.
Artículo en Inglés | MEDLINE | ID: mdl-32210914

RESUMEN

Background and Aims: The synthetic atypical cannabinoid Abn-CBD, a cannabidiol (CBD) derivative, has been recently shown to modulate the immune system in different organs, but its impact in obesity-related meta-inflammation remains unstudied. We investigated the effects of Abn-CBD on metabolic and inflammatory parameters utilizing a diet-induced obese (DIO) mouse model of prediabetes and non-alcoholic fatty liver disease (NAFLD). Materials and Methods: Ten-week-old C57Bl/6J mice were fed a high-fat diet for 15 weeks, following a 2-week treatment of daily intraperitoneal injections with Abn-CBD or vehicle. At week 15 mice were obese, prediabetic and developed NAFLD. Body weight and glucose homeostasis were monitored. Mice were euthanized and blood, liver, adipose tissue and pancreas were collected and processed for metabolic and inflammatory analysis. Results: Body weight and triglycerides profiles in blood and liver were comparable between vehicle- and Abn-CBD-treated DIO mice. However, treatment with Abn-CBD reduced hyperinsulinemia and markers of systemic low-grade inflammation in plasma and fat, also promoting white adipose tissue browning. Pancreatic islets from Abn-CBD-treated mice showed lower apoptosis, inflammation and oxidative stress than vehicle-treated DIO mice, and beta cell proliferation was induced. Furthermore, Abn-CBD lowered hepatic fibrosis, inflammation and macrophage infiltration in the liver when compared to vehicle-treated DIO mice. Importantly, the balance between hepatocyte proliferation and apoptosis was improved in Abn-CBD-treated compared to vehicle-treated DIO mice. Conclusions: These results suggest that Abn-CBD exerts beneficial immunomodulatory actions in the liver, pancreas and adipose tissue of DIO prediabetic mice with NAFLD, thus protecting tissues. Therefore, Abn-CBD and related compounds could represent novel pharmacological strategies for managing obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Inflamación/prevención & control , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Páncreas/efectos de los fármacos , Estado Prediabético/patología , Resorcinoles/farmacología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Citoprotección/efectos de los fármacos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Páncreas/metabolismo , Páncreas/patología , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/etiología , Estado Prediabético/metabolismo , Resorcinoles/uso terapéutico
16.
Hippocampus ; 19(7): 623-32, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19115376

RESUMEN

Early maternal deprivation (MD) in rats (24 h, postnatal day 9-10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender-dependent manner, and that these changes may account for the proposed schizophrenia-like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB(1) and CB(2) receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13-day-old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB(1) immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB(2) immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB(1) immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB(2) immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.


Asunto(s)
Hipocampo/metabolismo , Privación Materna , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Caracteres Sexuales , Análisis de Varianza , Animales , Animales Recién Nacidos , Densitometría , Giro Dentado/metabolismo , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Fotomicrografía , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética
17.
Genes (Basel) ; 10(5)2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137597

RESUMEN

'Metabesity' is a recent term comprising a wide range of diseases with underlying metabolic disarrangements at its root, and whose aetiology lies in complex relationships among genes and the obesogenic environment to which individuals are currently exposed in most countries. Of note, epigenetic changes are increasingly being reported to play an outstanding role in carrying deleterious information that, together with susceptibility genes, boost the development of metabesity in subsequent generations. In this context, it is noteworthy to mention that the transition from the pre-industrial era to the current high-technology society and global economy, even after suffering two world wars, has been very fast. By contrast, evolution-driven processes, such as biological ones, are slow. In fact, there is a general consensus that at the metabolic level, adipogenic processes and thrifty pathways prevail over those promoting energy expenditure in a way that currently leads to metabolic diseases by excessive energy storage. In such an imbalanced social-biological scenario, genes that were beneficial in the past have shifted to becoming detrimental, i.e., favouring metabesity, which is quickly growing to reach pandemic proportions.


Asunto(s)
Metabolismo Energético/genética , Enfermedades Metabólicas/genética , Regeneración/genética , Humanos , Enfermedades Metabólicas/epidemiología , Obesidad/genética , Obesidad/metabolismo
18.
Genes (Basel) ; 10(5)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072002

RESUMEN

The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet ß-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in ß-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic ß-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.


Asunto(s)
Encéfalo/metabolismo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Astrocitos/metabolismo , Metabolismo Energético , Homeostasis , Humanos
19.
Cell Death Dis ; 9(3): 279, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449530

RESUMEN

HMG20A (also known as iBRAF) is a chromatin factor involved in neuronal differentiation and maturation. Recently small nucleotide polymorphisms (SNPs) in the HMG20A gene have been linked to type 2 diabetes mellitus (T2DM) yet neither expression nor function of this T2DM candidate gene in islets is known. Herein we demonstrate that HMG20A is expressed in both human and mouse islets and that levels are decreased in islets of T2DM donors as compared to islets from non-diabetic donors. In vitro studies in mouse and human islets demonstrated that glucose transiently increased HMG20A transcript levels, a result also observed in islets of gestating mice. In contrast, HMG20A expression was not altered in islets from diet-induced obese and pre-diabetic mice. The T2DM-associated rs7119 SNP, located in the 3' UTR of the HMG20A transcript reduced the luciferase activity of a reporter construct in the human beta 1.1E7 cell line. Depletion of Hmg20a in the rat INS-1E cell line resulted in decreased expression levels of its neuronal target gene NeuroD whereas Rest and Pax4 were increased. Chromatin immunoprecipitation confirmed the interaction of HMG20A with the Pax4 gene promoter. Expression levels of Mafa, Glucokinase, and Insulin were also inhibited. Furthermore, glucose-induced insulin secretion was blunted in HMG20A-depleted islets. In summary, our data demonstrate that HMG20A expression in islet is essential for metabolism-insulin secretion coupling via the coordinated regulation of key islet-enriched genes such as NeuroD and Mafa and that depletion induces expression of genes such as Pax4 and Rest implicated in beta cell de-differentiation. More importantly we assign to the T2DM-linked rs7119 SNP the functional consequence of reducing HMG20A expression likely translating to impaired beta cell mature function.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Células Secretoras de Insulina/metabolismo , Polimorfismo de Nucleótido Simple , Regiones no Traducidas 3' , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Glucemia/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Predisposición Genética a la Enfermedad , Proteínas del Grupo de Alta Movilidad/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/patología , Lípidos/sangre , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Fenotipo , Ratas
20.
Neuropsychopharmacology ; 32(1): 117-26, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16482090

RESUMEN

Endocannabinoid signaling has recently been implicated in ethanol-seeking behavior. We analyzed the expression of endocannabinoid-related genes in key brain regions of reward and dependence, and compared them between the alcohol-preferring AA (Alko Alcohol) and nonpreferring ANA (Alko Non-Alcohol) rat lines. A decreased expression of fatty acid amidohydrolase (FAAH), the main endocannabinoid-degrading enzyme, was found in prefrontal cortex (PFC) of AA rats, and was accompanied by decreased enzyme activity in this region. Binding of the endocannabinoid-cannabinoid 1 (CB1) receptor ligand (3)[H]SR141716A, and [35S]GTPgammaS incorporation stimulated by the CB1 agonist WIN 55,212-2 were downregulated in the same area. Together, this suggests an overactive endocannabinoid transmission in the PFC of AA animals, and a compensatory downregulation of CB1 signaling. The functional role of impaired FAAH function for alcohol self-administration was validated in two independent ways. The CB1 antagonist SR141716A potently and dose-dependently suppressed self-administration in AA rats when given systemically, or locally into the PFC, but not in the striatum. Conversely, intra-PFC injections of the competitive FAAH inhibitor URB597 increased ethanol self-administration in nonselected Wistar rats. These results show for the first time that impaired FAAH function may confer a phenotype of high voluntary alcohol intake, and point to a FAAH both as a potential susceptibility factor and a therapeutic target.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Expresión Génica/fisiología , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Analgésicos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Benzoxazinas , Química Encefálica/efectos de los fármacos , Química Encefálica/genética , Carbamatos/farmacología , Depresores del Sistema Nervioso Central/administración & dosificación , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Etanol/administración & dosificación , Expresión Génica/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Hibridación in Situ/métodos , Masculino , Morfolinas/farmacología , Naftalenos/farmacología , Piperidinas/farmacocinética , Corteza Prefrontal/efectos de los fármacos , Pirazoles/farmacocinética , ARN Mensajero/metabolismo , Ratas , Receptor Cannabinoide CB1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Rimonabant , Autoadministración/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA