Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Genet ; 12: 673069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239540

RESUMEN

Genome-wide association studies (GWAS) have been utilized to detect genetic variations related to several agronomic traits and disease resistance in common bean. However, its application in the powdery mildew (PM) disease to identify candidate genes and their location in the common bean genome has not been fully addressed. Single-nucleotide polymorphism (SNP) genotyping with a BeadChip containing 5398 SNPs was used to detect genetic variations related to PM disease resistance in a panel of 211 genotypes grown under two field conditions for two consecutive years. Significant SNPs identified on chromosomes Pv04 and Pv10 were repeatable, ensuring the phenotypic data's reliability and the causal relationship. A cluster of resistance genes was revealed on the Pv04 of the common bean genome, coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL), and Toll/interleukin-1 receptor-nucleotide-binding site-leucine-rich repeat type (TIR-NBS-LRR, TNL)-like resistance genes were identified. Furthermore, two resistance genes, Phavu_010G1320001g and Phavu_010G136800g, were also identified on Pv10. Further sequence analysis showed that these genes were homologs to the disease-resistance protein (RLM1A-like) and the putative disease-resistance protein (At4g11170.1) in Arabidopsis. Significant SNPs related to two LRR receptor-like kinases (RLK) were only identified on Pv11 in 2018. Many genes encoding the auxin-responsive protein, TIFY10A protein, growth-regulating factor five-like, ubiquitin-like protein, and cell wall RBR3-like protein related to PM disease resistance were identified nearby significant SNPs. These results suggested that the resistance to PM pathogen involves a network of many genes constitutively co-expressed.

2.
Domest Anim Endocrinol ; 35(4): 343-51, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18760890

RESUMEN

Severe feed restriction decreases serum insulin-like growth factor I (IGF-I) concentration in animals, and this decrease is thought to be due to reduced IGF-I production in the liver. The objective of this study was to determine whether feed deprivation also increases degradation of serum IGF-I and serum levels of IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which inhibit IGF-I degradation and increase IGF-I retention in the blood by forming a ternary complex with IGF-I, in cattle. Five steers had free access to pasture, and another five were deprived of feed for 60 h. Serum concentration of IGF-I and liver abundance of IGF-I mRNA at the end of the 60-h period were 50% and 80% lower, respectively, in feed-deprived steers than in fed steers. Less (125)I-labeled IGF-I remained intact after a 45-h incubation in sera of feed-deprived steers than in sera of fed steers, suggesting that serum IGF-I is more quickly degraded in feed-deprived animals. Serum levels of IGFBP-3 and ALS were decreased by 40% and 30%, respectively, in feed-deprived steers compared with fed steers. These decreases were associated with more than 50% reductions in IGFBP-3 and ALS mRNA in the liver, the major source of serum IGFBP-3 and ALS. Taken together, these results suggest that feed deprivation reduces serum concentration of IGF-I in cattle not only by decreasing IGF-I gene expression in the liver, but also by increasing IGF-I degradation and reducing IGF-I retention in the blood through decreasing IGFBP-3 and ALS production in the liver.


Asunto(s)
Bovinos/sangre , Privación de Alimentos/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Animales , Western Blotting/veterinaria , Proteínas Portadoras/sangre , Proteínas Portadoras/genética , Glicoproteínas/sangre , Glicoproteínas/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacocinética , Radioisótopos de Yodo , Masculino , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Radioinmunoensayo , Ribonucleasas/metabolismo
3.
J AIDS Clin Res ; 8(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29226013

RESUMEN

Despite advancements in our understanding of HIV-1 pathogenesis, critical virus components for immunity, vaccines trials, and drugs development, challenges remain in the fight against HIV-1. Of great importance is the inhibitory function of microbicidal cell penetrating peptides and bacterial toxins that interfere with production and neutralize infection of HIV-1 particles. We demonstrate that the neutralizing activity of a cationic 18 amino acids peptide, is similar to a broadly neutralizing human antibody, and inhibits production of two HIV-1 strains in human cell lines. Pretreatment of cells with bacterial toxins or toxoids derived from enterotoxigenic E. coli, boost subsequent activity of the peptide against HIV-1, to inhibit simultaneously production and infection. The synthetic peptide crosses the cell membrane into the cytoplasm and nucleus. In vitro analysis of a possible target for this peptide revealed specific binding to recombinant HIV-1 gag p24. This is the first demonstration of a synergy between bacterial toxins and a cell-penetrating peptide against HIV-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA