RESUMEN
IS1071, an insertion element that primarily flanks organic xenobiotic degradation genes in cultured isolates, is suggested to play a key role in the formation and distribution of bacterial catabolic pathway gene clusters. However, in environmental settings, the identity of the IS1071 genetic cargo and its correspondence to the local selective conditions remain unknown. To respond, we developed a long-range PCR approach amplifying accessory genes between two IS1071 copies from community DNA followed by amplicon sequencing. We applied this method to pesticide-exposed environments, i.e. linuron-treated agricultural soil and on-farm biopurification systems (BPS) treating complex agricultural wastewater, as to non-treated controls. Amplicons were mainly recovered from the pesticide-exposed environments and the BPS matrix showed a higher size diversity compared to the agricultural soil. Retrieved gene functions mirrored the main selection pressure as (i) a large fraction of the BPS amplicons contained a high variety of genes/gene clusters related to the degradation of organics including herbicides present in the wastewater and (ii) in the agricultural soil, recovered genes were associated with linuron degradation. Our metagenomic analysis extends observations from cultured isolates and provides evidence that IS1071 is a carrier of catabolic genes in xenobiotica stressed environments and contributes to community level adaptation towards pesticide biodegradation.
Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Elementos Transponibles de ADN , Plaguicidas/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodegradación Ambiental , ADN Bacteriano/genética , Ecología , Herbicidas/metabolismo , Linurona/metabolismo , Metagenómica , ARN Ribosómico 16S/genética , Aguas Residuales/microbiologíaRESUMEN
UNLABELLED: The abundance of libA, encoding a hydrolase that initiates linuron degradation in the linuron-metabolizing Variovorax sp. strain SRS16, was previously found to correlate well with linuron mineralization, but not in all tested environments. Recently, an alternative linuron hydrolase, HylA, was identified in Variovorax sp. strain WDL1, a strain that initiates linuron degradation in a linuron-mineralizing commensal bacterial consortium. The discovery of alternative linuron hydrolases poses questions about the respective contribution and competitive character of hylA- and libA-carrying bacteria as well as the role of linuron-mineralizing consortia versus single strains in linuron-exposed settings. Therefore, dynamics of hylA as well as dcaQ as a marker for downstream catabolic functions involved in linuron mineralization, in response to linuron treatment in agricultural soil and on-farm biopurification systems (BPS), were compared with previously reported libA dynamics. The results suggest that (i) organisms containing either libA or hylA contribute simultaneously to linuron biodegradation in the same environment, albeit to various extents, (ii) environmental linuron mineralization depends on multispecies bacterial food webs, and (iii) initiation of linuron mineralization can be governed by currently unidentified enzymes. IMPORTANCE: A limited set of different isofunctional catabolic gene functions is known for the bacterial degradation of the phenylurea herbicide linuron, but the role of this redundancy in linuron degradation in environmental settings is not known. In this study, the simultaneous involvement of bacteria carrying one of two isofunctional linuron hydrolysis genes in the degradation of linuron was shown in agricultural soil and on-farm biopurification systems, as was the involvement of other bacterial populations that mineralize the downstream metabolites of linuron hydrolysis. This study illustrates the importance of the synergistic metabolism of pesticides in environmental settings.
Asunto(s)
Agricultura , Bacterias/metabolismo , Linurona/metabolismo , Microbiología del Suelo , Purificación del Agua/instrumentación , Bacterias/enzimología , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/genética , Microbiología Ambiental , Cadena Alimentaria , Genes Bacterianos , Herbicidas/metabolismo , Consorcios Microbianos , Plaguicidas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Suelo/químicaRESUMEN
In recent years, the application of pesticide biodegradation in remediation of pesticide-contaminated matrices moved from remediating bulk soil to remediating and mitigating pesticide pollution of groundwater and surface water bodies. Specialized pesticide-degrading microbial populations are used, which can be endogenous to the ecosystem of interest or introduced by means of bioaugmentation. It involves (semi-)natural ecosystems like agricultural fields, vegetated filter strips, and riparian wetlands and man-made ecosystems like on-farm biopurification systems, groundwater treatment systems, and dedicated modules in drinking water treatment. Those ecosystems and applications impose challenges which are often different from those associated with bulk soil remediation. These include high or extreme low pesticide concentrations, mixed contamination, the presence of alternative carbon sources, specific hydraulic conditions, and spatial and temporal variation. Moreover, for various indicated ecosystems, limited knowledge exists about the microbiota present and their physiology and about the in situ degradation kinetics. This review reports on the current knowledge on applications of biodegradation in mitigating and remediating freshwater pesticide contamination. Attention is paid to the challenges involved and current knowledge gaps for improving those applications.
Asunto(s)
Biodegradación Ambiental , Agua Dulce/análisis , Agua Subterránea/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ecosistema , Agua Dulce/microbiología , Agua Subterránea/microbiología , Plaguicidas/metabolismo , Contaminantes Químicos del Agua/metabolismoRESUMEN
Surface-imprinted polymers allow for specific cell detection based on simultaneous recognition of the cell shape, cell size, and cell membrane functionalities by macromolecular cell imprints. In this study, the specificity of detection and the detection sensitivity for target cells within a pool of non-target cells were analyzed for a cell-specific surface-imprinted polymer combined with a heat-transfer-based read-out technique (HTM). A modified Chinese hamster ovarian cell line (CHO-ldlD) was used as a model system on which the transmembrane protein mucin-1 (MUC1) could be excessively expressed and for which the occurrence of MUC1 glycosylation could be controlled. In specific cancer cells, the overexpressed MUC1 protein typically shows an aberrant apical distribution and glycosylation. We show that surface-imprinted polymers discriminate between cell types that (1) only differ in the expression of a specific membrane protein (MUC1) or (2) only differ in the membrane protein being glycosylated or not. Moreover, surface-imprinted polymers of cells carrying different glycoforms of the same membrane protein do target both types of cells. These findings illustrate the high specificity of cell detection that can be reached by the structural imprinting of cells in polymer layers. Competitiveness between target and non-target cells was proven to negatively affect the detection sensitivity of target cells. Furthermore, we show that the detection sensitivity can be increased significantly by repetitively exposing the surface to the sample and eliminating non-specifically bound cells by flushing between consecutive cell exposures.
Asunto(s)
Calor , Impresión Molecular , Poliuretanos/química , Animales , Células CHO , Células Cultivadas , Cricetulus , Glicosilación , Microscopía Fluorescente , Mucina-1/biosíntesis , Mucina-1/química , Mucina-1/metabolismo , Poliuretanos/metabolismo , Propiedades de SuperficieRESUMEN
The widespread agricultural application of carbofuran and concomitant contamination of surface and ground waters has raised health concerns due to the reported toxic effects of this insecticide and its degradation products. Most bacteria that degrade carbofuran only perform partial degradation involving carbamate hydrolysis without breakdown of the resulting phenolic metabolite. The capacity to mineralize carbofuran beyond the benzofuran ring has been reported for some bacterial strains, especially sphingomonads, and some common metabolites, including carbofuran phenol, were identified. In the current study, the catabolism of carbofuran by Novosphingobium sp. KN65.2 (LMG 28221), a strain isolated from a carbofuran-exposed Vietnamese soil and utilizing the compound as a sole carbon and nitrogen source, was studied. Several KN65.2 plasposon mutants with diminished or abolished capacity to degrade and mineralize carbofuran were generated and characterized. Metabolic profiling of representative mutants revealed new metabolic intermediates, in addition to the initial hydrolysis product carbofuran phenol. The promiscuous carbofuran-hydrolyzing enzyme Mcd, which is present in several bacteria lacking carbofuran ring mineralization capacity, is not encoded by the Novosphingobium sp. KN65.2 genome. An alternative hydrolase gene required for this step was not identified, but the constitutively expressed genes of the unique cfd operon, including the oxygenase genes cfdC and cfdE, could be linked to further degradation of the phenolic metabolite. A third involved oxygenase gene, cfdI, and the transporter gene cftA, encoding a TonB-dependent outer membrane receptor with potential regulatory function, are located outside the cfd cluster. This study has revealed the first dedicated carbofuran catabolic genes and provides insight in the early steps of benzofuran ring degradation.
Asunto(s)
Carbofurano/metabolismo , Insecticidas/metabolismo , Redes y Vías Metabólicas , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbofurano/química , Insecticidas/química , Microbiología del Suelo , Sphingomonadaceae/enzimología , Sphingomonadaceae/aislamiento & purificaciónRESUMEN
In previous work, the novel heat-transfer method (HTM) for the detection of small molecules with Molecularly Imprinted Polymers (MIP)-type receptors was presented. In this study we focus on optimization of this sensor performance, with as final aim to lower the detection limit by reducing the noise level. It was determined that the noise originates foremost from the power supply, which can be controlled by varying the PID parameters. Therefore, the effect of the individual parameters was evaluated by tuning P, I and D separately at a temperature of 37 °C, giving a first indication of the optimal configuration. Next, a temperature profile was programmed and the standard deviation of the heat-transfer resistance over the entire regime was studied for a set of parameters. The optimal configuration, P1-I6-D0, reduced the noise level with nearly a factor of three compared to the original parameters of P10-I5-D0. With the optimized settings, the detection of L-nicotine in buffer solutions was studied and the detection limit improved significantly from 100 nM to 35 nM. Summarizing, optimization of the PID parameters and thereby improving the detection limit is a key parameter for first applications of the HTM-method for MIP receptors in analytical research.
Asunto(s)
Artefactos , Biomimética/instrumentación , Inmunoensayo/instrumentación , Microquímica/instrumentación , Impresión Molecular/métodos , Nanotecnología/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , TemperaturaRESUMEN
libA, a gene encoding a novel type of linuron hydrolase, was recently identified in the linuron-mineralizing Variovorax sp. strain SRS16. In order to assess the contribution of libA to linuron degradation in environmental settings, libA abundance was monitored in response to the application of linuron and to environmental perturbations in agricultural soil microcosms and microcosms simulating the matrix of on-farm biopurification systems. libA numbers were measured by real-time PCR and linked to reported data of Variovorax community composition and linuron mineralization capacity. In the soil microcosms and one biopurification system setup, libA numbers responded to the application of linuron and environmental changes in congruency with the modulation of linuron mineralization capacity and the occurrence of a particular Variovorax phylotype (phylotype A). However, in another biopurification system setup, no such correlations were found. Our data suggest that in the simulated environmental settings, the occurrence of libA can be linked to the linuron mineralization capacity and that libA is primarily hosted by Variovorax phylotype A strains. However, the results also suggest that, apart from libA, other, as-yet-unknown isofunctional genes play an important role in linuron mineralization in the environment.
Asunto(s)
Comamonadaceae/genética , Comamonadaceae/metabolismo , Microbiología Ambiental , Hidrolasas/genética , Linurona/metabolismo , Metagenoma , Comamonadaceae/crecimiento & desarrollo , Genotipo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
On-farm biopurification systems (BPS) treat pesticide-contaminated wastewater of farms through biodegradation. Adding pesticide-primed soil has been shown to be beneficial for the establishment of pesticide-degrading populations in BPS. However, no data exist on the response of pesticide-degrading microbiota, either endogenous or introduced with pesticide-primed soil, when BPS are exposed to expected less favorable environmental conditions like cold periods, drought periods, and periods without a pesticide supply. Therefore, the response of microbiota mineralizing the herbicide linuron in BPS microcosm setups inoculated either with a linuron-primed soil or a nonprimed soil to a sequence of such less favorable conditions was examined. A period without linuron supply or a drought period reduced the size of the linuron-mineralizing community in both setups. The most severe effect was recorded for the setup containing nonprimed soil, in which stopping the linuron supply decreased the linuron degradation capacity to nondetectable levels. In both systems, linuron mineralization rapidly reestablished after conventional operation conditions were restored. A cold period and feeding with a pesticide mixture did not affect linuron mineralization. The changes in the linuron-mineralizing capacity in microcosms containing primed soil were associated with the dynamics of a particular Variovorax phylotype that previously had been associated with linuron mineralization. This study suggests that the pesticide-mineralizing community in BPS is robust in stress situations imposed by changes in environmental conditions expected to occur on farms. Moreover, it suggests that, in cases where effects do occur, recovery is rapid after restoring conventional operation conditions.
Asunto(s)
Bacterias/aislamiento & purificación , Microbiología Ambiental , Restauración y Remediación Ambiental/métodos , Herbicidas/metabolismo , Linurona/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Carga Bacteriana , Análisis por Conglomerados , Frío , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Gradiente Desnaturalizante , ARN Ribosómico 16S/genéticaRESUMEN
The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of â¼55 kDa with a K(m) and a V(max) for linuron of 5.8 µM and 0.16 nmol min⻹, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria.
Asunto(s)
Comamonadaceae/enzimología , Herbicidas/metabolismo , Hidrolasas/aislamiento & purificación , Hidrolasas/metabolismo , Compuestos de Fenilurea/metabolismo , Comamonadaceae/química , Comamonadaceae/genética , Genómica/métodos , Hidrolasas/química , Hidrolasas/genética , Cinética , Redes y Vías Metabólicas/genética , Peso Molecular , Proteómica/métodosRESUMEN
To assess the involvement of the genus Variovorax and the linuron hydrolase gene libA in in situ linuron degradation in agricultural fields, changes in Variovorax community size and composition, in libA abundance and in linuron mineralization capacity were monitored in field soil plots either treated or not with a linuron-containing herbicide mixture. Changes in Variovorax community composition, due to the proliferation of a hereto unknown Variovorax phylotype D, and increases in libA numbers occurred concomitant to increases in linuron mineralization capacity in the plot treated with the herbicide mixture. The observations suggest that Variovorax and libA proliferated as a response to linuron and hence their contribution to in situ linuron degradation. The involvement of Variovorax phylotype D and libA in linuron degradation in the examined soil was supported by laboratory soil microcosm experiments. Attempts to enrich in suspended cultures and isolate the organism corresponding to phylotype D from the soil were unsuccessful as the enrichment resulted in replacement of Variovorax phylotype D by other Variovorax phylotypes. This illustrates that linuron-degrading strains isolated by liquid enrichment cultures are not always representatives of those responsive to linuron in the field, although the genus specificity of linuron degradation was retained.
Asunto(s)
Comamonadaceae/metabolismo , Herbicidas/metabolismo , Linurona/metabolismo , Microbiología del Suelo , Secuencia de Bases , Biodegradación Ambiental , Comamonadaceae/genética , Comamonadaceae/aislamiento & purificación , Genes Bacterianos , Hidrolasas/genética , Datos de Secuencia MolecularRESUMEN
Mobile genetic elements (MGEs) are considered as key players in the adaptation of bacteria to degrade organic xenobiotic recalcitrant compounds such as pesticides. We examined the prevalence and abundance of IncP-1 plasmids and IS1071, two MGEs that are frequently linked with organic xenobiotic degradation, in laboratory and field ecosystems with and without pesticide pollution history. The ecosystems included on-farm biopurification systems (BPS) processing pesticide-contaminated wastewater and soil. Comparison of IncP-1/IS1071 prevalence between pesticide-treated and nontreated soil and BPS microcosms suggested that both IncP-1 and IS1071 proliferated as a response to pesticide treatment. The increased prevalence of IncP-1 plasmids and IS1071-specific sequences in treated systems was accompanied by an increase in the capacity to mineralize the applied pesticides. Both elements were also encountered in high abundance in field BPS ecosystems that were in operation at farmyards and that showed the capacity to degrade/mineralize a wide range of chlorinated aromatics and pesticides. In contrast, IS1071 and especially IncP-1, MGE were less abundant in field ecosystems without pesticide history although some of them still showed a high IS1071 abundance. Our data suggest that MGE-containing organisms were enriched in pesticide-contaminated environments like BPS where they might contribute to spreading of catabolic genes and to pathway assembly.
Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Plaguicidas/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Purificación del Agua , Agricultura , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Elementos Transponibles de ADN , Plásmidos , Aguas ResidualesRESUMEN
Addition of pesticide-primed soil containing adapted pesticide degrading bacteria to the biofilter matrix of on farm biopurification systems (BPS) which treat pesticide contaminated wastewater, has been recommended, in order to ensure rapid establishment of a pesticide degrading microbial community in BPS. However, uncertainties exist about the minimal soil inoculum density needed for successful bioaugmentation of BPS. Therefore, in this study, BPS microcosm experiments were initiated with different linuron primed soil inoculum densities ranging from 0.5 to 50 vol.% and the evolution of the linuron mineralization capacity in the microcosms was monitored during feeding with linuron. Successful establishment of a linuron mineralization community in the BPS microcosms was achieved with all inoculum densities including the 0.5 vol.% density with only minor differences in the time needed to acquire maximum degradation capacity. Moreover, once established, the robustness of the linuron degrading microbial community towards expected stress situations proved to be independent of the initial inoculum density. This study shows that pesticide-primed soil inoculum densities as low as 0.5 vol.% can be used for bioaugmentation of a BPS matrix and further supports the use of BPS for treatment of pesticide-contaminated wastewater at farmyards.
Asunto(s)
Bacterias/metabolismo , Plaguicidas/aislamiento & purificación , Plaguicidas/metabolismo , Microbiología del Suelo , Suelo/química , Purificación del Agua/métodos , Biodegradación Ambiental , Linurona/aislamiento & purificación , Linurona/metabolismo , Minerales/metabolismoRESUMEN
Microcosms were used to examine whether pesticide-primed soils could be preferentially used over nonprimed soils for bioaugmentation of on-farm biopurification systems (BPS) to improve pesticide mineralization. Microcosms containing a mixture of peat, straw and either linuron-primed soil or nonprimed soil were irrigated with clean or linuron-contaminated water. The lag time of linuron mineralization, recorded for microcosm samples, was indicative of the dynamics of the linuron-mineralizing biomass in the system. Bioaugmentation with linuron-primed soil immediately resulted in the establishment of a linuron-mineralizing capacity, which increased in size when fed with the pesticide. Also, microcosms containing nonprimed soil developed a linuron-mineralizing population, but after extended linuron feeding. Additional experiments showed that linuron-mineralization only developed with some nonprimed soils. Concomitant with the increase in linuron degradation capacity, targeted PCR-denaturing gradient gel electrophoresis showed the proliferation of a Variovorax phylotype related to the linuron-degrading Variovorax sp. SRS16 in microcosms containing linuron-primed soil, suggesting the involvement of Variovorax in linuron degradation. The correlation between the appearance of specific Variovorax phylotypes and linuron mineralization capacity was less clear in microcosms containing nonprimed soil. The data indicate that supplementation of pesticide-primed soil results in the establishment of pesticide-mineralizing populations in a BPS matrix with more certainty and more rapidly than the addition of nonprimed soil.
Asunto(s)
Agricultura/métodos , Comamonadaceae/metabolismo , Linurona/metabolismo , Plaguicidas/metabolismo , Suelo/química , Biodegradación Ambiental , Biomasa , Comamonadaceae/genética , Comamonadaceae/crecimiento & desarrollo , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Contaminantes del Suelo/metabolismoRESUMEN
Real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE) approaches that specifically target the Variovorax 16S rRNA gene were developed to estimate the number and diversity of Variovorax in environmental ecosystems. PCR primers suitable for both methods were selected as such that the enclosed sequence showed maximum polymorphism. PCR specificity was maximized by combining PCR with a targeted endonuclease treatment of template DNA to eliminate 16S rRNA genes of the closely related Acidovorax. DGGE allowed the grouping of PCR amplicons according to the phylogenetic grouping within the genus Variovorax. The toolbox was used to assess the Variovorax community dynamics in agricultural soil microcosms (SMs) exposed to the phenylurea herbicide linuron. Exposure to linuron resulted in an increased abundance within the Variovorax community of a subgroup previously linked to linuron degradation through cultivation-dependent isolation. SMs that were treated only once with linuron reverted to the initial community composition 70 days after linuron exposure. In contrast, SMs irrigated with linuron on a long-term base showed a significant increase in Variovorax number after 70 days. Our data support the hypothesis that the genus Variovorax is involved in linuron degradation in linuron-treated agricultural soils.
Asunto(s)
Comamonadaceae/aislamiento & purificación , Ecosistema , Herbicidas/metabolismo , Linurona/metabolismo , Microbiología del Suelo , Agricultura , Secuencia de Bases , Comamonadaceae/genética , Comamonadaceae/metabolismo , Cartilla de ADN/genética , ADN Bacteriano/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química , Especificidad de la EspecieRESUMEN
A proteomic approach was used to explore the metabolism of the phenylurea herbicide linuron and 3,4-dichloroaniline (3,4-DCA) in Variovorax sp. WDL1. This bacterium grows on linuron as sole source of carbon, nitrogen and energy, while it transiently accumulates 3,4-DCA as a metabolite. Differential protein expression analysis of Variovorax sp. WDL1 grown in a heterotrophic medium in the presence and absence of linuron or 3,4-DCA was conducted using 2-D PAGE. Selected up- and downregulated proteins were identified with nanoLC-ESI-MS/MS. In the 3,4-DCA-supplemented culture, upregulation of several proteins showing high amino acid sequence similarity to different components of the multicomponent aniline dioxygenase in aniline-degrading Proteobacteria was observed. For one of the components, multiple variant proteins were detected, suggesting that strain WDL1 harbors several copies of the aniline dioxygenase (AD) gene cluster which are simultaneously expressed in the presence of 3,4-DCA. A number of unidentifiable proteins, which were upregulated in the linuron- and/or 3,4-DCA-supplemented cultures, might represent up to now uncharacterized proteins with a role in linuron and/or 3,4-DCA degradation in strain WDL1. In addition, several stress-related proteins were differentially expressed.