Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Appl Physiol ; 122(2): 475-487, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34800158

RESUMEN

PURPOSE: Autonomic control of the heart is balanced by sympathetic and parasympathetic inputs. Excitation of both sympathetic and parasympathetic systems occurs concurrently during certain perturbations such as hypoxia, which stimulate carotid chemoreflex to drive ventilation. It is well established that the chemoreflex becomes sensitized throughout hypoxic exposure; however, whether progressive sensitization alters cardiac autonomic activity remains unknown. We sought to determine the duration of hypoxic exposure at high altitude necessary to unmask cardiac arrhythmias during instances of voluntary apnea. METHODS: Measurements of steady-state chemoreflex drive (SS-CD), continuous electrocardiogram (ECG) and SpO2 (pulse oximetry) were collected in 22 participants on 1 day at low altitude (1045 m) and over eight consecutive days at high-altitude (3800 m). SS-CD was quantified as ventilation (L/min) over stimulus index (PETCO2/SpO2). RESULTS: Bradycardia during apnea was greater at high altitude compared to low altitude for all days (p < 0.001). Cardiac arrhythmias occurred during apnea each day but became most prevalent (> 50%) following Day 5 at high altitude. Changes in saturation during apnea and apnea duration did not affect the magnitude of bradycardia during apnea (ANCOVA; saturation, p = 0.15 and apnea duration, p = 0.988). Interestingly, the magnitude of bradycardia was correlated with the incidence of arrhythmia per day (r = 0.8; p = 0.004). CONCLUSION: Our findings suggest that persistent hypoxia gradually increases vagal tone with time, indicated by augmented bradycardia during apnea and progressively increased the incidence of arrhythmia at high altitude.


Asunto(s)
Altitud , Apnea/fisiopatología , Arritmias Cardíacas/fisiopatología , Sistema Nervioso Autónomo/fisiopatología , Adulto , Electrocardiografía , Femenino , Humanos , Hipoxia/fisiopatología , Masculino , Oximetría
2.
Clin Auton Res ; 31(6): 755-765, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34528146

RESUMEN

PURPOSE: Following an acute exposure to hypoxia, sympathetic nerve activity remains elevated. However, this elevated sympathetic nerve activity does not elicit a parallel increase in vascular resistance suggesting a blunted sympathetic signaling [i.e. blunted sympathetic neurovascular transduction (sNVT)]. Therefore, we sought to quantify spontaneous sympathetic bursts and related changes in total peripheral resistance following hypoxic exposure. We hypothesized that following hypoxia sNVT would be blunted. METHODS: Nine healthy participants (n = 6 men; mean age 25 ± 2 years) were recruited. We collected data on muscle sympathetic nerve activity (MSNA) using microneurography and beat-by-beat total peripheral resistance (TPR) via finger photoplethysmography at baseline, during acute hypoxia and during two periods of recovery (recovery period 1, 0-10 min post hypoxia; recovery period 2, 10-20 min post hypoxia). MSNA burst sequences (i.e. singlets, doublets, triplets and quads+) were identified and coupled to changes in TPR over 15 cardiac cycles as an index of sNVT for burst sequences. A sNVT slope for each participant was calculated from the slope of the relationship between TPR plotted against normalized burst amplitude. RESULTS: The sNVT slope was blunted during hypoxia [Δ 0.0044 ± 0.0014 (mmHg/L/min)/(a.u.)], but unchanged following termination of hypoxia [recovery 1, Δ 0.031 ± 0.0019 (mmHg/L/min)/(a.u.); recovery 2, Δ 0.0038 ± 0.0014 (mmHg/L/min)/(a.u.) compared to baseline (Δ 0.038 ± 0.0015 (L/min/mmHg)/(a.u.)] (main effect of group p = 0.012). CONCLUSIONS: Contrary to our hypothesis, we have demonstrated that systemic sNVT is unchanged following hypoxia in young healthy adults.


Asunto(s)
Hipoxia , Sistema Nervioso Simpático , Adulto , Presión Sanguínea , Frecuencia Cardíaca , Hemodinámica , Humanos , Masculino , Músculo Esquelético , Músculos , Adulto Joven
3.
Clin Auton Res ; 31(3): 443-451, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33560461

RESUMEN

PURPOSE: Obstructive sleep apnea (OSA) is a common disorder (~ 4%) that augments sympathetic nerve activity (SNA) and elevates blood pressure. The relationship between sympathetic vasomotor outflow and vascular responsiveness, termed sympathetic neurovascular transduction (sNVT), has been sparsely characterized in patients with OSA. Therefore, we sought to quantify spontaneous sympathetic bursts and related changes in diastolic pressure. METHODS: Twelve participants with variable severities of OSA were recruited. We collected muscle sympathetic nerve activity (MSNA) (microneurography) and beat-by-beat diastolic pressure (finger photoplethysmography) during normoxia (FiO2 = 0.21) and hyperoxia (FiO2 = 1.0) to decrease MSNA burst frequency. MSNA burst sequences (i.e. singlets, doublets, triplets and quadruplets) were identified and coupled to changes in diastolic pressure over 15 cardiac cycles as an index of sNVT. sNVT slope for each individual was calculated from the slope of the relationship between peak responses in outcome plotted against normalized burst amplitude. RESULTS: sNVT slope was unchanged during hyperoxia compared to normoxia (normoxia 0.0024 ± 0.0011 Δ mmHg total activity [a.u.]-1 vs. hyperoxia 0.0029 ± 0.00098 Δ mmHg total activity [a.u.]-1; p = 0.14). sNVT slope was inversely associated with burst frequency during hyperoxia (r = -0.58; p = 0.04), but not normoxia (r = -0.11; p = 0.71). sNVT slope was inversely associated with the apnea-hypopnea index (AHI) (r = -0.62; p = 0.030), but not after age was considered. CONCLUSIONS: We have demonstrated that the prevailing MSNA frequency is unmatched to the level of sNVT, and this can be altered by acute hyperoxia.


Asunto(s)
Apnea Obstructiva del Sueño , Sistema Nervioso Simpático , Presión Sanguínea , Humanos , Músculo Esquelético , Músculos
4.
Am J Physiol Heart Circ Physiol ; 319(6): H1240-H1252, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986967

RESUMEN

High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.


Asunto(s)
Aclimatación , Altitud , Presión Arterial , Sistema Cardiovascular/inervación , Frecuencia Cardíaca , Músculo Esquelético/inervación , Sistema Nervioso Simpático/fisiología , Adulto , Femenino , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Nepal , Perú , Factores de Tiempo
6.
Appl Physiol Nutr Metab ; 48(3): 270-282, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634321

RESUMEN

Apnea (breath-holding) elicits co-activation of sympathetic and parasympathetic nervous systems, affecting cardiac control. In situations of autonomic co-activation (e.g., cold water immersion), cardiac arrhythmias are observed during apnea. Chronic endurance training reduces resting heart rate in part via elevation in parasympathetic tone, and has been identified as a risk factor for development of arrhythmias. However, few studies have investigated autonomic control of the heart in trained athletes during stress. Therefore, we determined whether heightened vagal tone resulting from endurance training promotes a higher incidence of arrhythmia during apnea. We assessed the heart rate, rhythm (ECG lead II), and cardiac inotropic (speckle-tracking echocardiography) response to apnea in 10 endurance trained and 7 untrained participants. Participants performed an apnea at rest and following sympathetic activation using post-exercise circulatory occlusion (PECO). All apneas were performed prior to control (CON) and following vagal block using glycopyrrolate (GLY). Trained participants had lower heart rates at rest (p = 0.03) and during apneas (p = 0.009) under CON. At rest, 3 trained participants exhibited instances of junctional rhythm and 4 trained participants developed ectopy during CON apneas, whereas 3 untrained participants developed ectopic beats only with concurrent sympathetic activation (PECO). Following GLY, no arrhythmias were noted in either group. Vagal block also revealed increased cardiac chronotropy (heart rate) and inotropy (strain rate) during apnea, demonstrating a greater sympathetic influence in the absence of parasympathetic drive. Our results highlight that endurance athletes may be more susceptible to ectopy via elevated vagal tone, whereas untrained participants may only develop ectopy through autonomic conflict.


Asunto(s)
Apnea , Sistema Nervioso Autónomo , Humanos , Frecuencia Cardíaca/fisiología , Sistema Nervioso Autónomo/fisiología , Corazón , Sistema Nervioso Parasimpático
7.
Physiol Rep ; 9(1): e14703, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33426815

RESUMEN

The presence of bradycardic arrhythmias during volitional apnea at altitude may be caused by chemoreflex activation/sensitization. We investigated whether bradyarrhythmic episodes became prevalent in apnea following short-term hypoxia exposure. Electrocardiograms (ECG; lead II) were collected from 22 low-altitude residents (F = 12; age=25 ± 5 years) at 671 m. Participants were exposed to normobaric hypoxia (SpO2 ~79 ± 3%) over a 5-h period. ECG rhythms were assessed during both free-breathing and maximal volitional end-expiratory and end-inspiratory apnea at baseline during normoxia and hypoxia exposure (20 min [AHX]; 5 h [HX5]). Free-breathing HR became elevated at AHX (78 ± 10 bpm; p < 0.0001) and HX5 (80 ± 12 bpm; p < 0.0001) compared to normoxia (68 ± 10 bpm), whereas apnea caused significant bradycardia at AHX (nadir end-expiratory -17 ± 14 bpm; p < 0.001) and HX5 (nadir end-expiratory -19 ± 15 bpm; p < 0.001), but not during normoxia (nadir end-expiratory -4 ± 13 bpm), with no difference in bradycardia responses between apneas at AHX and HX5. Conduction abnormalities were noted in five participants during normoxia (Premature Ventricular Contraction, Sinus Pause, Junctional Rhythm, Atrial Foci), which remained unchanged during apnea at AHX and HX5 (Premature Ventricular Contraction, Premature Atrial Contraction, Sinus Pause). End-inspiratory apneas were overall longer across conditions (normoxia p < 0.05; AHX p < 0.01; HX5 p < 0.001), with comparable HR responses to end-expiratory and fewer occurrences of arrhythmia. While short-term hypoxia is sufficient to elicit bradycardia during apnea, the occurrence of arrhythmias in response to apnea was not affected. These findings indicate that previously observed bradyarrhythmic events in untrained individuals at altitude only become prevalent following chronic hypoxia specificlly.


Asunto(s)
Apnea/fisiopatología , Arritmias Cardíacas/epidemiología , Bradicardia/epidemiología , Sistema de Conducción Cardíaco/fisiopatología , Hipoxia/fisiopatología , Adulto , Arritmias Cardíacas/patología , Bradicardia/patología , Canadá/epidemiología , Células Quimiorreceptoras , Femenino , Frecuencia Cardíaca , Humanos , Masculino
8.
J Appl Physiol (1985) ; 130(5): 1626-1634, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792401

RESUMEN

The relationship between sympathetic nerve activity and the vasculature has been of great interest due to its potential role in various cardiovascular-related diseases. This relationship, termed "sympathetic transduction," has been quantified using several different laboratory and analytical techniques. The most common method is to assess the association between relative changes in muscle sympathetic nerve activity, measured via microneurography, and physiological outcomes (e.g., blood pressure, total peripheral resistance, blood flow, etc.) in response to a sympathetic stressor (e.g., exercise, cold stress, orthostatic stress). This approach, however, comes with its own caveats. For instance, elevations in blood pressure and heart rate during a sympathetic stressor can have an independent impact on muscle sympathetic nerve activity. Another assessment of sympathetic transduction was developed by Wallin and Nerhed in 1982, where alterations in blood pressure and heart rate were assessed immediately following bursts of muscle sympathetic nerve activity at rest. This approach has since been characterized and further innovated by others, including the breakdown of consecutive burst sequences (e.g., singlet, doublet, triplet, and quadruplet), and burst height (quartile analysis) on specific vascular outcomes (e.g., blood pressure, blood flow, vascular resistance). The purpose of this review is to provide an overview of the literature that has assessed sympathetic transduction using microneurography and various sympathetic stressors (static sympathetic transduction) and using the same or similar approach established by Wallin and Nerhed at rest (dynamic neurovascular transduction). Herein, we discuss the overlapping literature between these two methodologies and highlight the key physiological questions that remain.


Asunto(s)
Sistema Cardiovascular , Sistema Nervioso Simpático , Presión Sanguínea , Frecuencia Cardíaca , Músculo Esquelético , Resistencia Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA