Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(5): 758-774, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235194

RESUMEN

Because human energy metabolism evolved to favor adiposity over leanness, the availability of palatable, easily attainable, and calorically dense foods has led to unprecedented levels of obesity and its associated metabolic co-morbidities that appear resistant to traditional lifestyle interventions. However, recent progress identifying the molecular signaling pathways through which the brain and the gastrointestinal system communicate to govern energy homeostasis, combined with emerging insights on the molecular mechanisms underlying successful bariatric surgery, gives reason to be optimistic that novel precision medicines that mimic, enhance, and/or modulate gut-brain signaling can have unprecedented potential for stopping the obesity and type 2 diabetes pandemics.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético , Tracto Gastrointestinal/fisiología , Animales , Regulación del Apetito , Encéfalo/anatomía & histología , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/inervación , Homeostasis , Humanos , Vías Nerviosas , Placer , Saciedad
2.
Int J Obes (Lond) ; 45(10): 2156-2168, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34230576

RESUMEN

Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.


Asunto(s)
Preferencias Alimentarias/psicología , Aprendizaje , Enfermedades Metabólicas/dietoterapia , Obesidad/dietoterapia , Animales , Modelos Animales de Enfermedad , Enfermedades Metabólicas/fisiopatología , Ratones Endogámicos C57BL/metabolismo , Obesidad/fisiopatología
3.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R328-R337, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231420

RESUMEN

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Asunto(s)
Ganglios Simpáticos/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Dopamina beta-Hidroxilasa/metabolismo , Riñón/inervación , Masculino , Ratones , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
4.
Front Neuroendocrinol ; 51: 125-131, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29890191

RESUMEN

Restriction of dietary protein intake increases food intake and energy expenditure, reduces growth, and alters amino acid, lipid, and glucose metabolism. While these responses suggest that animals 'sense' variations in amino acid consumption, the basic physiological mechanism mediating the adaptive response to protein restriction has been largely undescribed. In this review we make the case that the liver-derived metabolic hormone FGF21 is the key signal which communicates and coordinates the homeostatic response to dietary protein restriction. Support for this model centers on the evidence that FGF21 is induced by the restriction of dietary protein or amino acid intake and is required for adaptive changes in metabolism and behavior. FGF21 occupies a unique endocrine niche, being induced when energy intake is adequate but protein and carbohydrate are imbalanced. Collectively, the evidence thus suggests that FGF21 is the first known endocrine signal of dietary protein restriction.


Asunto(s)
Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Conducta Alimentaria/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis/fisiología , Animales
5.
Int J Obes (Lond) ; 43(11): 2143-2150, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30718818

RESUMEN

OBJECTIVES: Dieting often fails because weight loss triggers strong counter-regulatory biological responses such as increased hunger and hypometabolism that are thought to be critically dependent on the master fuel sensor in the mediobasal hypothalamus (MBH). Because prolonged starvation has been shown to increase AgRP and NPY, the expression level of these two orexigenic genes has been taken as an experimental readout for the presence or absence of hunger. Roux-en-Y gastric bypass (RYGB) surgery leads to a significant weight loss without inducing the associated hunger, indicating possible changes in hypothalamic neuropeptides and/or signaling. Our goal was to assess key genes in the MBH involved in regulating body weight, appetite, and inflammation/oxidative stress after RYGB surgery in mice. METHODS: Obese mice on a high-fat diet were subjected to either sham or RYGB surgery, or caloric restriction to match the weight of RYGB group. Chow-fed mice without surgery served as an additional control group. After 2 or 12 weeks post-surgery, hypothalamic genes were analyzed by real-time qPCR. RESULTS: During the rapid weight loss phase at 2 weeks after RYGB surgery, hypothalamic AgRP and NPY gene expression was not increased compared to mice with sham surgery, indicating that the mice are not hungry. In contrast, the same weight loss induced by caloric restriction promptly triggered increased AgRP and NPY expression. This differential effect of RYGB and caloric restriction was no longer observed during the weight-maintenance phase at 12 weeks after surgery. A similar differential effect was observed for ObRb, but not for POMC and CART expression. Furthermore, RAGE and IBA-1, two markers for inflammation/oxidative stress, were significantly suppressed after RYGB compared to caloric restriction at 2 weeks post-surgery. CONCLUSIONS: These findings suggest that RYGB prevents the biologically adaptive hunger response triggered by undernutrition and weight loss, and suppresses weight loss-induced hypothalamic inflammation markers.


Asunto(s)
Proteína Relacionada con Agouti/análisis , Restricción Calórica , Dieta Alta en Grasa , Derivación Gástrica , Hipotálamo/química , Neuropéptido Y/análisis , Animales , Ratones
6.
J Neurosci ; 37(25): 6053-6065, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28539422

RESUMEN

The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified.SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA GABA neurons is heterogeneous and largely undefined. Here we introduce LHA Gal neurons as a subset of LHA GABA neurons that lack direct innervation of the ventral tegmental area (VTA). LHA Gal neurons are sufficient to drive motivated feeding and locomotor activity similar to LHA GABA neurons, but without inducing compulsive-like behaviors, which we propose to require direct VTA innervation. Our study integrates galanin-expressing LHA neurons into our current understanding of the neuronal circuits and molecular mechanisms of the LHA that contribute to motivated feeding behaviors.


Asunto(s)
Galanina/biosíntesis , Área Hipotalámica Lateral/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Recompensa , Ácido gamma-Aminobutírico/fisiología , Animales , Antipsicóticos/farmacología , Clozapina/farmacología , Conducta Compulsiva , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Metabolismo Energético/fisiología , Alimentos , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/metabolismo , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Red Nerviosa/citología , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotransmisores/metabolismo
7.
Gastroenterology ; 152(7): 1728-1738, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28192106

RESUMEN

The brain plays a key role in the controls of energy intake and expenditure, and many genes associated with obesity are expressed in the central nervous system. Technological and conceptual advances in both basic and clinical neurosciences have expanded the traditional view of homeostatic regulation of body weight by mainly the hypothalamus to include hedonic controls of appetite by cortical and subcortical brain areas processing external sensory information, reward, cognition, and executive functions. Hedonic controls interact with homeostatic controls to regulate body weight in a flexible and adaptive manner that takes environmental conditions into account. This new conceptual framework has several important implications for the treatment of obesity. Because much of this interactive neural processing is outside awareness, cognitive restraint in a world of plenty is made difficult and prevention and treatment of obesity should be more rationally directed to the complex and often redundant mechanisms underlying this interaction.


Asunto(s)
Peso Corporal , Encéfalo/fisiopatología , Ingestión de Alimentos , Metabolismo Energético , Homeostasis , Obesidad/fisiopatología , Animales , Apetito , Humanos , Estado Nutricional/fisiología , Obesidad/etiología , Obesidad/terapia , Autocontrol , Olfato , Gusto , Visión Ocular
8.
Clin Chem ; 64(1): 118-129, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054924

RESUMEN

BACKGROUND: Although pharmacotherapy is not the cornerstone of obesity treatment, it is a valuable tool that could be considered for patients who have not had adequate benefit from lifestyle interventions or who have difficulty maintaining initial weight loss over longer periods. CONTENT: This review focuses on the role of antiobesity drugs, the mechanisms by which the drugs work, potential pharmacological targets in the neural control of food intake and regulation of body weight, the history of antiobesity drugs, a summary of efficacy and safety data from clinical trials, and the clinical application of pharmacotherapy. Currently, 5 approved drug therapies are available in the US for long-term weight management, with only 2 of these meeting the stronger Food and Drug Administration (FDA) criteria of 5% weight loss relative to a placebo after 1 year and others receiving approval based on the categorical criterion of the proportions of patients achieving 5% weight loss. Interpretation of the results of clinical trials conducted before regulatory agency approval is limited by high dropout rates; thus, the results might not be replicable in clinical practice settings. Many patients who are suitable candidates for pharmacotherapy are not using the new drugs due to lack of insurance coverage and high out-of-pocket costs. SUMMARY: With the availability of 4 new drugs since 2012, clinicians in the US now have more tools for long-term weight management. The quality of pharmacotherapy clinical investigations needs considerable improvement. Future research should focus on examining the mediators and moderators of response.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Obesidad/tratamiento farmacológico , Fármacos Antiobesidad/farmacología , Índice de Masa Corporal , Aprobación de Drogas , Homeostasis , Humanos , Obesidad/metabolismo , Selección de Paciente , Estados Unidos , United States Food and Drug Administration , Pérdida de Peso/efectos de los fármacos
9.
J Neurosci ; 36(18): 5034-46, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147656

RESUMEN

UNLABELLED: The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT: Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Peso Corporal/fisiología , Glutamatos/fisiología , Homeostasis/fisiología , Neuronas/fisiología , Área Preóptica/citología , Área Preóptica/fisiología , Receptores de Leptina/biosíntesis , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/fisiología , Animales , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/fisiología , Ratones , Receptores Adrenérgicos beta 3/efectos de los fármacos , Receptores Adrenérgicos beta 3/fisiología , Receptores de Leptina/genética , Temperatura
10.
Handb Exp Pharmacol ; 233: 173-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26578523

RESUMEN

The continuous rise in obesity is a major concern for future healthcare management. Many strategies to control body weight focus on a permanent modification of food intake with limited success in the long term. Metabolism or energy expenditure is the other side of the coin for the regulation of body weight, and strategies to enhance energy expenditure are a current focus for obesity treatment, especially since the (re)-discovery of the energy depleting brown adipose tissue in adult humans. Conversely, several human illnesses like neurodegenerative diseases, cancer, or autoimmune deficiency syndrome suffer from increased energy expenditure and severe weight loss. Thus, strategies to modulate energy expenditure to target weight gain or loss would improve life expectancies and quality of life in many human patients. The aim of this book chapter is to give an overview of our current understanding and recent progress in energy expenditure control with specific emphasis on central control mechanisms.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético , Adaptación Fisiológica , Animales , Tronco Encefálico/fisiología , Humanos , Hipotálamo/fisiología , Termogénesis
12.
Am J Physiol Regul Integr Comp Physiol ; 306(5): R352-62, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24430883

RESUMEN

Exaggerated GLP-1 and PYY secretion is thought to be a major mechanism in the reduced food intake and body weight after Roux-en-Y gastric bypass surgery. Here, we use complementary pharmacological and genetic loss-of-function approaches to test the role of increased signaling by these gut hormones in high-fat diet-induced obese rodents. Chronic brain infusion of a supramaximal dose of the selective GLP-1 receptor antagonist exendin-9-39 into the lateral cerebral ventricle significantly increased food intake and body weight in both RYGB and sham-operated rats, suggesting that, while contributing to the physiological control of food intake and body weight, central GLP-1 receptor signaling tone is not the critical mechanism uniquely responsible for the body weight-lowering effects of RYGB. Central infusion of the selective Y2R-antagonist BIIE0246 had no effect in either group, suggesting that it is not critical for the effects of RYGB on body weight under the conditions tested. In a recently established mouse model of RYGB that closely mimics surgery and weight loss dynamics in humans, obese GLP-1R-deficient mice lost the same amount of body weight and fat mass and maintained similarly lower body weight compared with wild-type mice. Together, the results surprisingly provide no support for important individual roles of either gut hormone in the specific mechanisms by which RYGB rats settle at a lower body weight. It is likely that the beneficial effects of bariatric surgeries are expressed through complex mechanisms that require combination approaches for their identification.


Asunto(s)
Derivación Gástrica , Receptores de Glucagón/metabolismo , Pérdida de Peso/fisiología , Animales , Arginina/administración & dosificación , Arginina/análogos & derivados , Arginina/farmacología , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Composición Corporal , Peso Corporal/efectos de los fármacos , Grasas de la Dieta , Ingestión de Alimentos , Metabolismo Energético , Receptor del Péptido 1 Similar al Glucagón , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Obesidad/metabolismo , Obesidad/cirugía , Consumo de Oxígeno , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/genética
13.
Auton Neurosci ; 253: 103174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579493

RESUMEN

The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.


Asunto(s)
Interocepción , Hepatopatías , Hígado , Humanos , Interocepción/fisiología , Animales , Hepatopatías/fisiopatología , Hepatopatías/metabolismo , Hígado/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología
14.
Neuropharmacology ; 255: 110010, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797244

RESUMEN

Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".


Asunto(s)
Ingestión de Alimentos , Factores de Crecimiento de Fibroblastos , Preferencias Alimentarias , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Preferencias Alimentarias/fisiología , Ingestión de Alimentos/fisiología , Humanos , Nutrientes , Proteínas en la Dieta/administración & dosificación , Adaptación Fisiológica/fisiología , Dieta con Restricción de Proteínas , Encéfalo/metabolismo , Encéfalo/fisiología
15.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798313

RESUMEN

Dietary protein restriction induces adaptive changes in food preference, increasing protein consumption over carbohydrates or fat. We investigated whether motivation and reward signaling underpin these preferences. In an operant task, protein-restricted male mice increased their responding for liquid protein rewards, but not carbohydrate, fat, or sweet rewards. The protein restriction-induced increase in operant responding for protein was absent in Fgf21-KO mice and mice with neuron-specific deletion of the FGF21 co-receptor beta-Klotho (KlbCam2ka) mice. Fiber photometry recording of VTA dopamine neurons revealed that oral delivery of maltodextrin triggered a larger activation of dopamine neurons as compared to casein in control-fed mice, while casein produced a larger response in protein-restricted mice. This restriction-induced shift in nutrient-specific VTA dopamine signaling was lost in Fgf21-KO mice. These data demonstrate that FGF21 acts in the brain to induce a protein-specific appetite by specifically enhancing the reward value of protein-containing foods and the motivation to consume them.

17.
Mol Metab ; 78: 101817, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806487

RESUMEN

Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.


Asunto(s)
Células Receptoras Sensoriales , Nervio Vago , Humanos , Células Receptoras Sensoriales/metabolismo , Nervio Vago/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Ganglios Espinales/metabolismo
18.
Mol Metab ; 68: 101517, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35644477

RESUMEN

BACKGROUND: Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW: The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS: Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.


Asunto(s)
Cirugía Bariátrica , Derivación Gástrica , Obesidad Mórbida , Animales , Humanos , Obesidad Mórbida/metabolismo , Cirugía Bariátrica/efectos adversos , Obesidad/metabolismo , Derivación Gástrica/métodos , Pérdida de Peso/fisiología
19.
Bone ; 167: 116608, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36368466

RESUMEN

BACKGROUND: Peptide YY (PYY) is an anorexigenic gut hormone that also has anti-osteogenic effects, inhibiting osteoblastic activity and inducing catabolic effects. It has been postulated that increases in PYY after Roux-en-Y gastric bypass (RYGB) contribute to declines in bone mineral density (BMD) and increases in bone turnover. The aim of this study is to determine the role of the PYY Y2-receptor in mediating bone loss post-RYGB in mice. METHODS: We compared adult male wildtype (WT) and PYY Y2 receptor-deficient (KO) C57BL/6 mice that received RYGB (WT: n = 8; KO: n = 9), with sham-operated mice (Sham; WT: n = 9; KO: n = 10) and mice that were food-restricted to match the weights of the RYGB-treated group (Weight-Matched, WM; WT: n = 7; KO: n = 5). RYGB or sham surgery was performed at 15-16 weeks of age, and mice sacrificed 21 weeks later. We characterized bone microarchitecture with micro-computed tomography (µCT) at the distal femur (trabecular) and femoral midshaft (cortical). Differences in body weight, bone microarchitecture and biochemical bone markers (parathyroid hormone, PTH; C-telopeptide, CTX; and type 1 procollagen, P1NP) were compared using 2-factor ANOVA with Tukey's adjustments for multiple comparisons. RESULTS: Body weights were similar in the WT-RYGB, WT-WM, KO-RYGB, and KO-WM: 41-44 g; these groups weighed significantly less than the Sham surgery groups: 55-57 g. Trabecular BMD was 31-43 % lower in RYGB mice than either Sham or WM in WT and KO groups. This deficiency in trabecular bone was accompanied by a lower trabecular number (19 %-23 %), thickness (22 %-30 %) and increased trabecular spacing (25 %-34 %) in WT and KO groups (p < 0.001 for all comparisons vs. RYGB). RYGB led to lower cortical thickness, cortical tissue mineral density, and cortical bone area fraction as compared to Sham and WM in WT and KO groups (p ≤ 0.004 for all). There were no interactions between genotype and bone microarchitecture, with patterns of response to RYGB similar in both WT and KO groups. CTX and P1NP were significantly higher in RYGB mice than WM in WT and KO groups. PTH did not differ among groups. CONCLUSIONS: RYGB induced greater trabecular and cortical deficits and high bone turnover than observed in weight-matched mice, with a similar pattern in the WT and Y2RKO mice. Thus, skeletal effects of RYGB are independent of weight loss, and furthermore, PYY signaling through Y2R is not a key mediator of bone loss post-RYGB.


Asunto(s)
Enfermedades Óseas Metabólicas , Derivación Gástrica , Animales , Masculino , Ratones , Densidad Ósea/fisiología , Ratones Endogámicos C57BL , Péptido YY , Microtomografía por Rayos X
20.
Nutrients ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049555

RESUMEN

Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Resistencia a la Insulina , Humanos , Ratones , Animales , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Aminoácidos de Cadena Ramificada , Insulina , Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Glucemia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA