Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776650

RESUMEN

Imaging in the shortwave infrared (SWIR, 1000-1700 nm) region is gaining traction for biomedical applications, leading to an in-depth search for fluorophores emitting at these wavelengths. The development of SWIR emitters, to be used in vivo in biological media, is mostly hampered by the considerable lipophilicity of the structures, resulting from the highly conjugated scaffold required to shift the emission to this region, that limit their aqueous solubility. In this work, we have modulated a known SWIR emitter, named Flav7, by adding hydrophilic moieties to the flavylium scaffold and we developed a new series of Flav7-derivatives, which proved to be indeed more polar than the parent compound, but still not freely water-soluble. Optical characterization of these derivatives allowed us to select FlavMorpho, a new compound with improved emission properties compared to Flav7. Encapsulation of the two compounds in micelles resulted in water-soluble SWIR emitters, with FlavMorpho micelles being twice as emissive as Flav7 micelles. The SWIR emission extent of FlavMorpho micelles proved also superior to the tail-emission of Indocyanine Green (ICG), the FDA-approved reference cyanine, in the same region, by exciting the probes at their respective absorption maxima in phosphate buffered saline (PBS) solution. The availability of optical imaging devices equipped with lasers able to excite these dyes at their maximum of absorption in the SWIR region, could pave the way for implemented SWIR imaging results.


Asunto(s)
Diseño de Fármacos , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Rayos Infrarrojos , Micelas , Imagen Óptica , Solubilidad
2.
Bioorg Chem ; 144: 107164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306824

RESUMEN

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Asunto(s)
Neoplasias Pulmonares , Melanoma Experimental , Animales , Ratones , Septinas , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500607

RESUMEN

BRAF is a serine/threonine kinase frequently mutated in human cancers. BRAFV600E mutated protein is targeted through the use of kinase inhibitors which are approved for the treatment of melanoma; however, their long-term efficacy is hampered by resistance mechanisms. The PROTAC-induced degradation of BRAFV600E has been proposed as an alternative strategy to avoid the onset of resistance. In this study, we designed a series of compounds where the BRAF kinase inhibitor encorafenib was conjugated to pomalidomide through different linkers. The synthesized compounds maintained their ability to inhibit the kinase activity of mutated BRAF with IC50 values in the 40-88 nM range. Selected compounds inhibited BRAFV600E signaling and cellular proliferation of A375 and Colo205 tumor cell lines. Compounds 10 and 11, the most active of the series, were not able to induce degradation of mutated BRAF. Docking and molecular dynamic studies, conducted in comparison with the efficient BRAF degrader P5B, suggest that a different orientation of the linker bearing the pomalidomide substructure, together with a decreased mobility of the solvent-exposed part of the conjugates, could explain this behavior.


Asunto(s)
Quimera Dirigida a la Proteólisis , Proteínas Proto-Oncogénicas B-raf , Humanos , Sulfonamidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Mutación
4.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834004

RESUMEN

In recent years, the interplay between the activation of the immune system, the development of chronic inflammation and the onset and progression of many different diseases has been studied extensively [...].


Asunto(s)
Inflamasomas/antagonistas & inhibidores , Animales , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
5.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209843

RESUMEN

In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1ß release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1ß release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein-ligand binding that might explain the activity of the compounds.


Asunto(s)
Imidazoles , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Piroptosis/efectos de los fármacos , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacología , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células THP-1
6.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158345

RESUMEN

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Timina ADN Glicosilasa/metabolismo , Animales , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inhibidores , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
8.
Arch Biochem Biophys ; 670: 116-139, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30448387

RESUMEN

The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the best recognized and most widely implicated regulator of caspase-1 activation. It is a key regulator of innate immune response and is involved in many pathophysiological processes. Recent evidences for its inappropriate activation in autoinflammatory, autoimmune, as well as in neurodegenerative diseases attract a growing interest toward the development of small molecules NLRP3 inhibitors. Based on the knowledge of biochemical and structural aspects of NLRP3 activation, one successful strategy in the identification of NLRP3 inhibitors relies on the development of covalent irreversible inhibitors. Covalent inhibitors are reactive electrophilic molecules able to alkylate nucleophiles in the target protein. These inhibitors could ensure good efficacy and prolonged duration of action both in vitro and in vivo. In spite of these advantages, effects on other signalling pathways, prone to alkylation, may occur. In this review, we will illustrate the chemistry and the biological action of the most studied covalent NLRP3 inhibitors developed so far. A description of what we know about their mechanism of action will address the reader toward a critical understanding of NLRP3 inhibition by electrophilic compounds.


Asunto(s)
Descubrimiento de Drogas/métodos , Inflamasomas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Humanos , Inflamasomas/química , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Conformación Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
Pharmacol Res ; 103: 132-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26621246

RESUMEN

PURPOSE: Patients with high cardiovascular risk due to ageing and/or comorbidity (diabetes, atherosclerosis) that require effective management of chronic pain may take advantage from new non-steroidal anti-inflammatory drugs (NSAIDs) that at clinical dosages may integrate the anti-inflammatory activity and reduced gastrointestinal side effects of selective cyclooxygenase-2 (COX-2) inhibitor (coxib) with a cardioprotective component involving antagonism of thromboxane A2 prostanoid (TP) receptor. METHODS: New compounds were obtained modulating the structure of the most potent coxib, lumiracoxib, to obtain novel multitarget NSAIDs endowed with balanced coxib and TP receptor antagonist properties. Antagonist activity at TP receptor (pA2) was evaluated for all compounds in human platelets and in an heterologous expression system by measuring prevention of aggregation and Gq-dependent production of intracellular inositol phosphate induced by the stable thromboxane A2 (TXA2) agonist U46619. COX-1 and COX-2 inhibitory activities were assessed in human washed platelets and lympho-monocytes suspension, respectively. COX selectivity was determined from dose-response curves by calculating a ratio (COX-2/COX-1) of IC50 values. RESULTS: The tetrazole derivative 18 and the trifluoromethan sulfonamido-isoster 20 were the more active antagonists at TP receptor, preventing human platelet aggregation and intracellular signalling, with pA2 values statistically higher from that of lumiracoxib. Comparative data regarding COX-2/COX-1 selectivity showed that while compounds 18 and 7 were rather potent and selective COX-2 inhibitor, compound 20 was somehow less potent and selective for COX-2. CONCLUSION: These results indicate that compounds 18 and 20 are two novel combined TP receptor antagonists and COX-2 inhibitors characterized by a fairly balanced COX-2 inhibitor activity and TP receptor antagonism and that they may represent a first optimization of the original structure to improve their multitarget activity.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Receptores de Tromboxanos/antagonistas & inhibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adolescente , Adulto , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Diclofenaco/análogos & derivados , Diclofenaco/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Naftalenos/farmacología , Naproxeno/farmacología , Propionatos/farmacología , Receptores de Tromboxanos/genética , Receptores de Tromboxanos/metabolismo , Adulto Joven
10.
Vascul Pharmacol ; 156: 107397, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897555

RESUMEN

BACKGROUND: Several factors contribute to ischemia/reperfusion injury (IRI), including activation of the NLRP3 inflammasome and its byproducts, such as interleukin-1ß (IL-1ß) and caspase-1. However, NLRP3 may paradoxically exhibit cardioprotective properties. This study aimed to assess the protective effects of the novel NLRP3 inhibitor, INF195, both in vitro and ex vivo. METHODS: To investigate the relationship between NLRP3 and myocardial IRI, we synthetized a series of novel NLRP3 inhibitors, and investigated their putative binding mode via docking studies. Through in vitro studies we identified INF195 as optimal for NLRP3 inhibition. We measured infarct-size in isolated mouse hearts subjected to 30-min global ischemia/one-hour reperfusion in the presence of three different doses of INF195 (5, 10, or 20-µM). We analyzed caspase-1 and IL-1ß concentration in cardiac tissue homogenates by ELISA. Statistical significance was determined using one-way ANOVA followed by Tukey's test. RESULTS AND CONCLUSION: INF195 reduces NLRP3-induced pyroptosis in human macrophages. Heart pre-treatment with 5 and 10-µM INF195 significantly reduces both infarct size and IL-1ß levels. Data suggest that intracardiac NLRP3 activation contributes to IRI and that low doses of INF195 exert cardioprotective effects by reducing infarct size. However, at 20-µM, INF195 efficacy declines, leading to a lack of cardioprotection. Research is required to determine if high doses of INF195 have off-target effects or dual roles, potentially eliminating both harmful and cardioprotective functions of NLRP3. Our findings highlight the potential of a new chemical scaffold, amenable to further optimization, to provide NLRP3 inhibition and cardioprotection in the ischemia/reperfusion setting.


Asunto(s)
Caspasa 1 , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inflamasomas , Interleucina-1beta , Ratones Endogámicos C57BL , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo , Masculino , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Inflamasomas/efectos de los fármacos , Humanos , Infarto del Miocardio/prevención & control , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Preparación de Corazón Aislado , Ratones , Miocardio/patología , Miocardio/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos
11.
Bioorg Med Chem ; 21(7): 2107-16, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23394865

RESUMEN

Neutrophils play a pivotal role in the pathophysiology of multiple human inflammatory diseases. Novel pharmacological strategies which drive neutrophils to undergo programmed cell death (apoptosis) have been shown to facilitate the resolution of inflammation. Both the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine and nitric oxide (NO) have been shown to enhance apoptosis of neutrophils and possess pro-resolution of inflammation properties. In order to search for new multi-target pro-resolution derivatives, here we describe the design, synthesis and investigation of the biological potential of a small series of hybrid compounds obtained by conjugating R-roscovitine with two different NO-donor moieties (compounds 2, 9a, 9c). The synthesized compounds were tested as potential pro-resolution agents, with their ability to promote human neutrophil apoptosis evaluated. Both compound 9a and 9c showed an increased pro-apoptotic activity when compared with either R-roscovitine or structurally related compounds devoid of the ability to release NO (des-NO analogues). Inhibition of either NO-synthase or soluble guanylate cyclase did not affect the induction of apoptosis by the R-roscovitine derivatives, similar to that reported for other classes of NO-donors. In contrast the NO scavenger PTIO prevented the enhanced apoptosis seen with compound 9a over R-roscovitine. These data show that novel compounds such as CDKi-NO-donor hybrids may have additive pro-resolution of inflammation effects.


Asunto(s)
Apoptosis/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Neutrófilos/efectos de los fármacos , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Purinas/química , Purinas/farmacología , Células Cultivadas , Guanilato Ciclasa/antagonistas & inhibidores , Humanos , Neutrófilos/citología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Roscovitina , Guanilil Ciclasa Soluble
12.
Int J Biol Macromol ; 246: 125609, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37394218

RESUMEN

The protein NLRP3 and its complexes are associated with an array of inflammatory pathologies, among which neurodegenerative, autoimmune, and metabolic diseases. Targeting the NLRP3 inflammasome represents a promising strategy for easing the symptoms of pathologic neuroinflammation. When the inflammasome is activated, NLRP3 undergoes a conformational change triggering the production of pro-inflammatory cytokines IL-1ß and IL-18, as well as cell death by pyroptosis. NLRP3 nucleotide-binding and oligomerization (NACHT) domain plays a crucial role in this function by binding and hydrolysing ATP and is primarily responsible, together with conformational transitions involving the PYD domain, for the complex-assembly process. Allosteric ligands proved able to induce NLRP3 inhibition. Herein, we examine the origins of allosteric inhibition of NLRP3. Through the use of molecular dynamics (MD) simulations and advanced analysis methods, we provide molecular-level insights into how allosteric binding affects protein structure and dynamics, remodelling of the conformational ensembles populated by the protein, with key reverberations on how NLRP3 is preorganized for assembly and ultimately function. The data are used to develop a Machine Learning model to define the protein as Active or Inactive, only based on the analysis of its internal dynamics. We propose this model as a novel tool to select allosteric ligands.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ligandos , Citocinas , Diseño de Fármacos , Interleucina-1beta/metabolismo
13.
Eur J Med Chem ; 257: 115542, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290185

RESUMEN

Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1ß release (35.5 ± 8.8% µM) at 10 µM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.


Asunto(s)
Daño por Reperfusión Miocárdica , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas , Lipopolisacáridos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Teóricos
14.
Antioxidants (Basel) ; 11(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35052670

RESUMEN

Chronic use of glyceryl trinitrate (GTN) is limited by serious side effects, such as tolerance and endothelial dysfunction of coronary and resistance arteries. Although GTN is used as a drug since more than 130 years, the mechanisms of the vasodilatory effects and of tolerance development to organic nitrates are still incompletely elucidated. New synthesized organic nitrates with and without antioxidant properties were characterized for their ex vivo tolerance profile, in order to investigate the oxidative stress hypothesis of nitrate tolerance. The organic nitrates studied showed different vasodilation and tolerance profiles, probably due to the ability or inability of the compounds to interact with the aldehyde dehydrogenase-2 enzyme (ALDH-2) involved in bioactivation. Furthermore, nitrooxy derivatives endowed with antioxidant properties did not determine the onset of tolerance, even if bioactivated by ALDH-2. The results of this study could be further evidence of the involvement of ALDH-2 in the development of nitrate tolerance. Moreover, the behavior of organic nitrates with antioxidant properties supports the hypothesis of the involvement of ROS in inactivating ALDH-2.

15.
Oxid Med Cell Longev ; 2020: 9219825, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832010

RESUMEN

Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 µM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 µM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ticagrelor/uso terapéutico , Animales , Humanos , Masculino , Oxidación-Reducción , Inhibidores de Agregación Plaquetaria/farmacología , Ratas , Ratas Wistar , Ticagrelor/farmacología
17.
Bioorg Med Chem ; 16(17): 7900-7, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18706821

RESUMEN

A series of over a hundred furoxans, alkylnitrates and related compounds were studied as growth inhibitors of the two major kinetoplastids of Latin America, Trypanosoma cruziand Leishmania spp., in in vitro assays. The most active compounds showed 50% inhibitory doses of the same order of that of Nifurtimox and Miltefosine, reference drugs used to treat Chagas Disease and Leishmaniasis respectively. Among the studied compounds derivative 4, presenting excellent inhibitory activity against the tryposmastigote and amastigote forms of T. cruzi, has emerged as a lead compound. Mechanism of action seems to involve mitochondrial dehydrogenases as a distinct effect with respect to Nifurtimox. Excreted metabolites, studied by NMR, showed a significant decrease in succinate, confirming the observed effect on the mitochrondrial dehydrogenases.


Asunto(s)
Leishmania/efectos de los fármacos , Nitritos/farmacología , Oxadiazoles/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Leishmania/crecimiento & desarrollo , Estructura Molecular , Nitritos/síntesis química , Nitritos/química , Oxadiazoles/síntesis química , Oxadiazoles/química , Pruebas de Sensibilidad Parasitaria , Estereoisomerismo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Tripanocidas/química , Trypanosoma cruzi/crecimiento & desarrollo
18.
Front Pharmacol ; 9: 1405, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559669

RESUMEN

Nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is pivotal in maintaining intestinal homeostasis and sustaining enteric immune responses in the setting of inflammatory bowel diseases. Drugs acting as NLRP3 blockers could represent innovative strategies for treatment of bowel inflammation. This study was performed in rats with dinitrobenzenesulfonic acid (DNBS)-induced colitis, to investigate how the direct blockade of NLRP3 inflammasome with an irreversible inhibitor (INF39) compares with Ac-YVAD-cmk (YVAD, caspase-1 inhibitor) and anakinra (IL-1ß receptor antagonist), acting downstream on NLRP3 signaling. Animals with DNBS-colitis received YVAD (3 mg/kg) or anakinra (100 mg/Kg) intraperitoneally, and INF39 (25 mg/kg) or dexamethasone (DEX, 1 mg/kg) orally for 6 days, starting on the same day of colitis induction. Under colitis, there was a body weight decrease, which was attenuated by YVAD, anakinra or INF39, but not DEX. All test drugs counteracted the increase in spleen weight. The colonic shortening and morphological colonic alterations associated with colitis were counteracted by INF39, anakinra and DEX, while YVAD was without effects. Tissue increments of myeloperoxidase, tumor necrosis factor and interleukin-1ß were more effectively counteracted by INF39 and DEX, than YVAD and anakinra. These findings indicate that: (1) direct inhibition of NLRP3 inflammasome with INF39 is more effective than caspase-1 inhibition or IL-1ß receptor blockade in reducing systemic and bowel inflammatory alterations; (2) direct NLRP3 inhibition can be a suitable strategy for treatment of bowel inflammation.

19.
Cell Death Dis ; 9(7): 756, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29988033

RESUMEN

Metastasis formation requires active energy production and is regulated at multiple levels by mitochondrial metabolism. The hyperactive metabolism of cancer cells supports their extreme adaptability and plasticity and facilitates resistance to common anticancer therapies. In spite the potential relevance of a metastasis metabolic control therapy, so far, limited experience is available in this direction. Here, we evaluated the effect of the recently described α-ketoglutarate dehydrogenase (KGDH) inhibitor, (S)-2-[(2,6-dichlorobenzoyl) amino] succinic acid (AA6), in an orthotopic mouse model of breast cancer 4T1 and in other human breast cancer cell lines. In all conditions, AA6 altered Krebs cycle causing intracellular α-ketoglutarate (α-KG) accumulation. Consequently, the activity of the α-KG-dependent epigenetic enzymes, including the DNA demethylation ten-eleven translocation translocation hydroxylases (TETs), was increased. In mice, AA6 injection reduced metastasis formation and increased 5hmC levels in primary tumours. Moreover, in vitro and in vivo treatment with AA6 determined an α-KG accumulation paralleled by an enhanced production of nitric oxide (NO). This epigenetically remodelled metabolic environment efficiently counteracted the initiating steps of tumour invasion inhibiting the epithelial-to-mesenchymal transition (EMT). Mechanistically, AA6 treatment could be linked to upregulation of the NO-sensitive anti-metastatic miRNA 200 family and down-modulation of EMT-associated transcription factor Zeb1 and its CtBP1 cofactor. This scenario led to a decrease of the matrix metalloproteinase 3 (MMP3) and to an impairment of 4T1 aggressiveness. Overall, our data suggest that AA6 determines an α-KG-dependent epigenetic regulation of the TET-miR200-Zeb1/CtBP1-MMP3 axis providing an anti-metastatic effect in a mouse model of breast cancer-associated metastasis.


Asunto(s)
Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Ácido Succínico/uso terapéutico , Animales , Neoplasias de la Mama/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ácido Succínico/química
20.
J Med Chem ; 50(20): 5003-11, 2007 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17845020

RESUMEN

The structure of fenoterol, a beta2-adrenoceptor agonist used in therapy, has been joined with furoxan NO-donor moieties to give new NO-donor beta2-agonists. The furazan analogues, devoid of the property to release NO, were also synthesized for comparison. All the compounds retained beta2-agonistic activity at micromolar or submicromolar concentration when tested on guinea pig tracheal rings precontracted with carbachol. Among the furoxan derivatives, the NO contribution to trachea relaxation was evident with product 15b at micromolar concentrations. All the new NO-donor hybrids were able to dilate rat aortic strips precontracted with phenylephrine. Both furoxan and furazan derivatives displayed antioxidant activity greater than that of fenoterol.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Fenoterol/análogos & derivados , Fenoterol/síntesis química , Donantes de Óxido Nítrico/síntesis química , Oxadiazoles/síntesis química , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/fisiología , Fenoterol/química , Fenoterol/farmacología , Cobayas , Técnicas In Vitro , Masculino , Microsomas Hepáticos/metabolismo , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Óxido Nítrico/biosíntesis , Óxido Nítrico/química , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Oxadiazoles/química , Oxadiazoles/farmacología , Ratas , Ratas Wistar , Estereoisomerismo , Relación Estructura-Actividad , Tráquea/efectos de los fármacos , Tráquea/fisiología , Vasodilatadores/síntesis química , Vasodilatadores/química , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA