Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 116(4): 661-70, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20363774

RESUMEN

Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Plaquetas/fisiología , Lectinas Tipo C/fisiología , Vasos Linfáticos/embriología , Vasos Linfáticos/fisiología , Fosfoproteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Plaquetas/metabolismo , Vasos Sanguíneos/metabolismo , Células Cultivadas , Embrión de Mamíferos , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Linfático/embriología , Endotelio Linfático/metabolismo , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
Dev Cell ; 11(6): 845-57, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17141159

RESUMEN

Hemodynamic responses that control blood pressure and the distribution of blood flow to different organs are essential for survival. Shear forces generated by blood flow regulate hemodynamic responses, but the molecular and genetic basis for such regulation is not known. The transcription factor KLF2 is activated by fluid shear stress in cultured endothelial cells, where it regulates a large number of vasoactive endothelial genes. Here, we show that Klf2 expression during development mirrors the rise of fluid shear forces, and that endothelial loss of Klf2 results in lethal embryonic heart failure due to a high-cardiac-output state. Klf2 deficiency does not result in anemia or structural vascular defects, and it can be rescued by administration of phenylephrine, a catecholamine that raises vessel tone. These findings identify Klf2 as an essential hemodynamic regulator in vivo and suggest that hemodynamic regulation in response to fluid shear stress is required for cardiovascular development and function.


Asunto(s)
Vasos Sanguíneos/fisiología , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insuficiencia Cardíaca , Factores de Transcripción de Tipo Kruppel/fisiología , Anemia/fisiopatología , Animales , Malformaciones Arteriovenosas/fisiopatología , Velocidad del Flujo Sanguíneo , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Genes Letales , Integrasas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Miocardio/citología , Miocardio/metabolismo , Fenilefrina/farmacología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Receptor TIE-2/genética , Receptor TIE-2/fisiología , Estrés Mecánico , Transcripción Genética , Venas Umbilicales/citología , Venas Umbilicales/efectos de los fármacos , Venas Umbilicales/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 30(12): 2368-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21071706

RESUMEN

The field of platelet biology has rapidly expanded beyond the classical role of platelets in preventing blood loss and orchestrating clot formation. Despite the lack of transcriptional ability of these anuclear cell fragments, platelet function is now thought to encompass such diverse contexts as tissue repair, immune activation, primary tumor formation, and metastasis. Recent studies from multiple groups have turned the spotlight on an exciting new role for platelets in the formation of lymphatic vessels during embryonic development. Genetic experiments demonstrate that podoplanin, a transmembrane protein expressed on lymphatic endothelial cells, engages the platelet C-type lectin-like receptor 2 (CLEC-2) when exposed to blood, leading to SYK-SLP-76-dependent platelet activation. When components of this pathway are disrupted, aberrant vascular connections form, resulting in blood-lymphatic mixing. Furthermore, platelet-null embryos manifest identical blood-lymphatic mixing. The identification of platelets as the critical cell type mediating blood-lymphatic vascular separation raises new questions in our understanding of lymphatic development and platelet biology.


Asunto(s)
Plaquetas/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Vasos Linfáticos/embriología , Glicoproteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Activación Plaquetaria , Proteínas Tirosina Quinasas/metabolismo , Quinasa Syk
4.
Mol Cell Biol ; 27(3): 912-25, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17101781

RESUMEN

Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.


Asunto(s)
Metabolismo Energético , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Carcinoma de Células Renales/patología , Hipoxia de la Célula/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Hidroxilación/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Mitocondrias/efectos de los fármacos , Imitación Molecular/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Prolina/química , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Termodinámica , Desacopladores/farmacología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
5.
In Vitro Cell Dev Biol Anim ; 42(3-4): 58-62, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16759149

RESUMEN

To increase the efficiency of stable cell line establishment from primary ovarian cancer specimens, we simultaneously initiated cultures under multiple conditions, varying extracellular matrices and the inclusion of supplements (e.g., serum or serum albumin), while minimizing exposure to xenogeneic antigens (e.g., fetal calf serum). Primary cultures were initiated from 30 specimens; cell lines were established from 10 of these for a success rate of 33%. In some instances, multiple cell lines were established from the same specimen. Five lines were characterized extensively with respect to growth properties, antigen expression, and genomic alterations. Although these lines are all low-passage, marked heterogeneity was observed, even between lines derived from the same specimen. The culture approach outlined herein will facilitate generation of reagents useful for many aspects of ovarian cancer biology.


Asunto(s)
Técnicas de Cultivo de Célula , Línea Celular , Neoplasias Ováricas/patología , Animales , Células Cultivadas , Femenino , Humanos , Células Tumorales Cultivadas
6.
J Clin Invest ; 122(6): 2006-17, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22622036

RESUMEN

Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anomalías Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Proteínas de Homeodominio/biosíntesis , Vasos Linfáticos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Velocidad del Flujo Sanguíneo , Anomalías Cardiovasculares/patología , Línea Celular , Células Endoteliales/patología , Proteínas de Homeodominio/genética , Humanos , Vasos Linfáticos/anomalías , Vasos Linfáticos/patología , Ratones , Ratones Mutantes , Fosfoproteínas/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA