Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36975217

RESUMEN

Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.


Asunto(s)
Técnicas de Transferencia de Gen , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Animales Modificados Genéticamente , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Elementos Transponibles de ADN/genética
2.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383884

RESUMEN

Organ morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveals distinct functions of Rasip1 during sprouting angiogenesis, anastomosis and lumen formation. During angiogenic sprouting, loss of Rasip1 causes cell pairing defects due to a destabilization of tricellular junctions, indicating that stable tricellular junctions are essential to maintain multicellular organization within the sprout. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function mimics the junctional defects of rasip1 mutants. Furthermore, downregulation of ccm1 and heg1 leads to a delocalization of Rasip1 at cell junctions, indicating that junctional tethering of Rasip1 is required for its function in junction formation and stabilization during sprouting angiogenesis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Uniones Intercelulares/metabolismo , Uniones Intercelulares/fisiología , Proteínas de la Membrana/metabolismo , Morfogénesis/fisiología , Pez Cebra/fisiología
3.
Nature ; 555(7698): 678-682, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29562234

RESUMEN

Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.


Asunto(s)
Histidina/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Proteínas Supresoras de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Humanos , Pirofosfatasa Inorgánica/deficiencia , Pirofosfatasa Inorgánica/genética , Masculino , Ratones , Fosforilación , Proteómica , Análisis de Supervivencia , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
4.
Development ; 143(13): 2249-60, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381223

RESUMEN

Vascular networks are formed and maintained through a multitude of angiogenic processes, such as sprouting, anastomosis and pruning. Only recently has it become possible to study the behavior of the endothelial cells that contribute to these networks at a single-cell level in vivo This Review summarizes what is known about endothelial cell behavior during developmental angiogenesis, focusing on the morphogenetic changes that these cells undergo.


Asunto(s)
Células Endoteliales/citología , Neovascularización Fisiológica , Animales , Fusión Celular , Células Endoteliales/metabolismo , Humanos , Modelos Biológicos , Morfogénesis , Transducción de Señal
5.
PLoS Biol ; 13(4): e1002126, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25884426

RESUMEN

During embryonic development, vascular networks remodel to meet the increasing demand of growing tissues for oxygen and nutrients. This is achieved by the pruning of redundant blood vessel segments, which then allows more efficient blood flow patterns. Because of the lack of an in vivo system suitable for high-resolution live imaging, the dynamics of the pruning process have not been described in detail. Here, we present the subintestinal vein (SIV) plexus of the zebrafish embryo as a novel model to study pruning at the cellular level. We show that blood vessel regression is a coordinated process of cell rearrangements involving lumen collapse and cell-cell contact resolution. Interestingly, the cellular rearrangements during pruning resemble endothelial cell behavior during vessel fusion in a reversed order. In pruning segments, endothelial cells first migrate toward opposing sides where they join the parental vascular branches, thus remodeling the multicellular segment into a unicellular connection. Often, the lumen is maintained throughout this process, and transient unicellular tubes form through cell self-fusion. In a second step, the unicellular connection is resolved unilaterally, and the pruning cell rejoins the opposing branch. Thus, we show for the first time that various cellular activities are coordinated to achieve blood vessel pruning and define two different morphogenetic pathways, which are selected by the flow environment.


Asunto(s)
Fusión Celular , Endotelio Vascular/embriología , Animales , Animales Modificados Genéticamente , Neovascularización Fisiológica , Pez Cebra/embriología
6.
Proc Natl Acad Sci U S A ; 110(31): 12526-34, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23852728

RESUMEN

The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of growth. Mammalian TOR complex 2 (mTORC2) regulates AGC kinase family members and is implicated in various disorders, including cancer and diabetes. Here we report that mTORC2 is localized to the endoplasmic reticulum (ER) subcompartment termed mitochondria-associated ER membrane (MAM). mTORC2 localization to MAM was growth factor-stimulated, and mTORC2 at MAM interacted with the IP3 receptor (IP3R)-Grp75-voltage-dependent anion-selective channel 1 ER-mitochondrial tethering complex. mTORC2 deficiency disrupted MAM, causing mitochondrial defects including increases in mitochondrial membrane potential, ATP production, and calcium uptake. mTORC2 controlled MAM integrity and mitochondrial function via Akt mediated phosphorylation of the MAM associated proteins IP3R, Hexokinase 2, and phosphofurin acidic cluster sorting protein 2. Thus, mTORC2 is at the core of a MAM signaling hub that controls growth and metabolism.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Retículo Endoplásmico/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Complejos Multiproteicos/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética
7.
Mol Cell Proteomics ; 12(12): 3898-907, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24072685

RESUMEN

Here, we present the full integration of a proximity ligation assay (PLA) on a microfluidic chip for systematic cell signaling studies. PLA is an in situ technology for the detection of protein interaction, post-translational modification, concentration, and cellular location with single-molecule resolution. Analytical performance advances on chip are achieved, including full automation of the biochemical PLA steps, target multiplexing, and reduction of antibody consumption by 2 orders of magnitude relative to standard procedures. In combination with a microfluidic cell-culturing platform, this technology allows one to gain control over 128 cell culture microenvironments. We demonstrate the use of the combined cell culture and protein analytic assay on chip by characterizing the Akt signaling pathway upon PDGF stimulation. Signal transduction is detected by monitoring the phosphorylation states of Akt, GSK-3ß, p70S6K, S6, Erk1/2, and mTOR and the cellular location of FoxO3a in parallel with the PLA. Single-cell PLA results revealed for Akt and direct targets of Akt a maximum activation time of 4 to 8 min upon PDGF stimulation. Activation times for phosphorylation events downward in the Akt signaling pathway including the phosphorylation of S6, p70S6K, and mTOR are delayed by 8 to 10 min or exhibit a response time of at least 1 h. Quantitative confirmation of the Akt phosphorylation signal was determined with the help of a mouse embryonic fibroblast cell line deficient for rictor. In sum, this work with a miniaturized PLA chip establishes a biotechnological tool for general cell signaling studies and their dynamics relevant for a broad range of biological inquiry.


Asunto(s)
Fibroblastos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones , Técnicas Analíticas Microfluídicas/métodos , Células 3T3 NIH , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
8.
Hum Mol Genet ; 18(13): 2378-87, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19357198

RESUMEN

Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which hamartomas develop in multiple organ systems. Knockout and conditional alleles of Tsc1 and Tsc2 have been previously reported. Here, we describe the generation of a novel hypomorphic allele of Tsc2 (del3), in which exon 3, encoding 37 amino acids near the N terminus of tuberin, is deleted. Embryos homozygous for the del3 allele survive until E13.5, 2 days longer than Tsc2 null embryos. Embryos die from underdevelopment of the liver, deficient hematopoiesis, aberrant vascular development and hemorrhage. Mice that are heterozygous for the del3 allele have a markedly reduced kidney tumor burden in comparison with conventional Tsc2(+/-) mice. Murine embryo fibroblast (MEF) cultures that are homozygous for the del3 allele express mutant tuberin at low levels, and show enhanced activation of mTORC1, similar to Tsc2 null MEFs. Furthermore, the mutant cells show prominent reduction in the activation of AKT. Similar findings were made in the analysis of homozygous del3 embryo lysates. Tsc2-del3 demonstrates GTPase activating protein activity comparable to that of wild-type Tsc2 in a functional assay. These findings indicate that the del3 allele is a hypomorphic allele of Tsc2 with partial function due to reduced expression, and highlight the consistency of AKT downregulation when Tsc1/Tsc2 function is reduced. Tsc2-del3 mice also serve as a model for hypomorphic TSC2 missense mutations reported in TSC patients.


Asunto(s)
Modelos Animales de Enfermedad , Hamartoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Alelos , Animales , Línea Celular , Exones , Femenino , Eliminación de Gen , Hamartoma/embriología , Hamartoma/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
9.
Sci Adv ; 2(12): e1601756, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28028542

RESUMEN

We report that the anticancer activity of the widely used diabetic drug metformin is strongly potentiated by syrosingopine. Synthetic lethality elicited by combining the two drugs is synergistic and specific to transformed cells. This effect is unrelated to syrosingopine's known role as an inhibitor of the vesicular monoamine transporters. Syrosingopine binds to the glycolytic enzyme α-enolase in vitro, and the expression of the γ-enolase isoform correlates with nonresponsiveness to the drug combination. Syrosingopine sensitized cancer cells to metformin and its more potent derivative phenformin far below the individual toxic threshold of each compound. Thus, combining syrosingopine and codrugs is a promising therapeutic strategy for clinical application for the treatment of cancer.


Asunto(s)
Metformina/farmacología , Reserpina/análogos & derivados , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Glucólisis , Humanos , Ratones , Ratones Noqueados , Fenformina/farmacología , Fosfopiruvato Hidratasa/química , Reserpina/farmacología
10.
J Cell Biol ; 203(4): 563-74, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24385483

RESUMEN

Target of rapamycin (TOR) forms two conserved, structurally distinct kinase complexes termed TOR complex 1 (TORC1) and TORC2. Each complex phosphorylates a different set of substrates to regulate cell growth. In mammals, mTOR is stimulated by nutrients and growth factors and inhibited by stress to ensure that cells grow only during favorable conditions. Studies in different organisms have reported localization of TOR to several distinct subcellular compartments. Notably, the finding that mTORC1 is localized to the lysosome has significantly enhanced our understanding of mTORC1 regulation. Subcellular localization may be a general principle used by TOR to enact precise spatial and temporal control of cell growth.


Asunto(s)
Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Transporte de Proteínas
11.
Cell Metab ; 15(5): 725-38, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22521878

RESUMEN

Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates and activates AGC kinase family members, including Akt, SGK1, and PKC, in response to insulin/IGF1. The liver is a key organ in insulin-mediated regulation of metabolism. To assess the role of hepatic mTORC2, we generated liver-specific rictor knockout (LiRiKO) mice. Fed LiRiKO mice displayed loss of Akt Ser473 phosphorylation and reduced glucokinase and SREBP1c activity in the liver, leading to constitutive gluconeogenesis, and impaired glycolysis and lipogenesis, suggesting that the mTORC2-deficient liver is unable to sense satiety. These liver-specific defects resulted in systemic hyperglycemia, hyperinsulinemia, and hypolipidemia. Expression of constitutively active Akt2 in mTORC2-deficient hepatocytes restored both glucose flux and lipogenesis, whereas glucokinase overexpression rescued glucose flux but not lipogenesis. Thus, mTORC2 regulates hepatic glucose and lipid metabolism via insulin-induced Akt signaling to control whole-body metabolic homeostasis. These findings have implications for emerging drug therapies that target mTORC2.


Asunto(s)
Glucoquinasa/metabolismo , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transactivadores/metabolismo , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucoquinasa/genética , Gluconeogénesis , Glucosa/genética , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Glucólisis , Hepatocitos/metabolismo , Homeostasis , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/genética , Insulina/metabolismo , Metabolismo de los Lípidos , Lipogénesis , Hígado/enzimología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Noqueados , Fosforilación , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA