Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Radiat Oncol ; 9(3): 101424, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379893

RESUMEN

Introduction: Craniospinal irradiation (CSI) is indicated for adult patients diagnosed with leptomeningeal disease (LMD). Proton-based vertebral body sparing (VBS) CSI has been explored with pediatric patients to minimize hematologic toxicity; however, utilization of VBS in an adult population is limited. A recent phase II trial has shown efficacy of proton-based CSI to treat non-small cell lung and breast cancer with LMD. We hypothesize that VBS CSI using volumetric modulated arc therapy (VMAT) could also effectively reduce dose to vertebral bodies and surrounding organs at risk, minimizing toxicity for adult patients with LMD and comparing favorably to proton-based CSI. Methods and Materials: Consecutive patients with LMD received VMAT VBS CSI, 30 Gy in 10 fractions, as a part of a prospective registry. Full VMAT arcs for the brain fields matched to 2 spine isocenters for the upper and lower spine were created using limited posterior arcs. To further decrease the vertebral body dose, an avoid entry and exit contour was created. Acute toxicity data were collected using Common Terminology Criteria for Adverse Events v5. Results: Ten adult patients were treated in this cohort. One patient experienced grade 2 neutropenia with the remaining 9 experiencing grade 1 hematologic toxicity. Three patients experienced grade 2 gastrointestinal toxicity with the remaining 7 experiencing grade 1 nausea. No patient experienced grade 3+ toxicities in this cohort. One patient experienced a 5-day delay in systemic therapy initiation due to neutropenia; otherwise, all patients planned for systemic therapy started without delay. Conclusions: In this study, VMAT VBS CSI led to acceptable toxicity compared with patients treated with proton CSI on a phase 2 clinical trial. Given its promising early results, future prospective evaluation of the technique is warranted.

2.
Int J Radiat Oncol Biol Phys ; 118(4): 979-985, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871886

RESUMEN

PURPOSE: The current standard for meningioma treatment planning involves magnetic resonance imaging-based guidance. Somatostatin receptor ligands such as 68Ga-DOTATATE are being explored for meningioma treatment planning due to near-universal expression of somatostatin receptors 1 and 2 in meningioma tissue. We hypothesized that 68Ga-DOTATATE positron emission tomography (PET)-guided treatment management for patients with meningiomas is safe and effective and can identify which patients benefit most from adjuvant radiation therapy. METHODS AND MATERIALS: A single-institution prospective registry study was created for inclusion of patients with intracranial meningiomas who received a 68Ga-DOTATATE PET/CT to assist with radiation oncologist decision making. Patients who received a PET scan from January 1, 2018, to February 25, 2022, were eligible for inclusion. RESULTS: Of the 60 patients included, 40%, 47%, and 5% had World Health Organization grades 1, 2, and 3 meningiomas, respectively, and 8% (5 patients) had no grade assigned. According to Radiation Therapy Oncology Group 0539 criteria, 22%, 72%, and 7% were categorized as high, intermediate, and low risk, respectively. After completing their PET scans, 48 patients, 11 patients, and 1 patient proceeded with radiation therapy, observation, and redo craniotomy, respectively. The median follow-up for the entire cohort was 19.5 months. Of the 3 patients (5%) who experienced local failure between 9.2 and 28.5 months after diagnosis, 2 had PET-avid disease in their postoperative cavity and elected for observation before recurrence, and 1 high-risk patient with multifocal disease experienced local failure 2 years after a second radiation course and multiple previous recurrences. Notably, 5 patients did not have any local PET uptake and were observed; none of these patients experienced recurrence. Only 1 grade 3 toxicity was attributed to PET-guided radiation. CONCLUSIONS: This study examined one of the largest known populations of patients with intracranial meningiomas followed by physicians who used 68Ga-DOTATATE PET-guided therapy. Incorporating 68Ga-DOTATATE PET into future trials may assist with clinician decision making and improve patient outcomes.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Compuestos Organometálicos , Cintigrafía , Humanos , Meningioma/diagnóstico por imagen , Meningioma/radioterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Galio , Tomografía de Emisión de Positrones/métodos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/radioterapia
3.
Adv Radiat Oncol ; 9(2): 101337, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405310

RESUMEN

Purpose: Recent advances to preserve neurocognitive function in patients treated for brain metastases include stereotactic radiosurgery, hippocampal avoidance whole brain radiation therapy (WBRT), and memantine administration. The hippocampus, corpus callosum, fornix, and amygdala are key neurocognitive substructures with a low propensity for brain metastases. Herein, we report our preliminary experience using a "memory-avoidance" WBRT (MA-WBRT) approach that spares these substructures for patients with >15 brain metastases. Methods and Materials: Ten consecutive patients treated with MA-WBRT on a phase 2 clinical trial were reviewed. In each patient, the hippocampi, amygdalae, corpus callosum, and fornix were contoured. Patients were not eligible for MA-WBRT if they had metastases in these substructures. A memory-avoidance region was created using a 5-mm volumetric expansion around these substructures. Hotspots were avoided in the hypothalamus and pituitary gland. Coverage of brain metastases was prioritized over memory avoidance dose constraints. Dose constraints for these avoidance structures included a D100% ≤ 9 Gy and D0.03 cm3 ≤ 16 Gy (variation acceptable to 20 Gy). LINAC-based volumetric modulated arc therapy plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the memory avoidance structure volume was 37.1 cm3 (range, 25.2-44.6 cm3), occupying 2.5% of the entire whole brain target volume. All treatment plans met the D100% dose constraint, and 8 of 10 plans met the D0.03 cm3 constraint, with priority given to tumor coverage for the remaining 2 cases. Target coverage (D98% > 25 Gy) and homogeneity (D2% ≤ 37.5 Gy) were achieved for all plans. Conclusions: Modern volumetric modulated arc therapy techniques allow for sparing of the hippocampus, amygdala, corpus callosum, and fornix with good target coverage and homogeneity. After enrollment is completed, quality of life and cognitive data will be evaluated to assess the efficacy of MA-WBRT to mitigate declines in quality of life and cognition after whole brain radiation.

4.
Surg Oncol Clin N Am ; 32(3): 569-586, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182993

RESUMEN

Radiotherapy remains a cornerstone treatment of brain metastases. With new treatment advances, patients with brain metastases are living longer, and finding solutions for mitigating treatment-related neurotoxicity and improving quality of life is important. Historically, whole-brain radiation therapy (WBRT) was widely used but treatment options such as hippocampal sparing WBRT and stereotactic radiosurgery (SRS) have emerged as promising alternatives. Herein, we discuss the recent advances in radiotherapy for brain metastases including the sparing of critical structures that may improve long-term neurocognitive outcomes (eg, hippocampus, fornix) that may improve long-term neurocognitive outcome, evidence supporting preoperative and fractionated-SRS, and treatment strategies for managing radiation necrosis.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Calidad de Vida , Irradiación Craneana , Radiocirugia/efectos adversos , Hipocampo/patología
5.
Cancers (Basel) ; 16(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201564

RESUMEN

BACKGROUND: Breast cancer is the second most common cause of brain metastases (BM). Despite increasing incidence of BM in older women, there are limited data on the optimal management of BM in this age group. In this study, we assessed the survival outcomes and treatment patterns of older breast cancer patients ≥65 years old with BM compared to younger patients at our institution. METHODS: An IRB-approved single-institutional retrospective review of biopsy-proven breast cancer patients with BM treated with 1- to 5-fraction stereotactic radiation therapy (SRS) from 2015 to 2020 was performed. Primary endpoint was intracranial progression-free survival (PFS) defined as the time interval between the end of SRS to the date of the first CNS progression. Secondary endpoints were overall survival (OS) from the end of SRS and radiation treatment patterns. Kaplan-Meier estimates and Cox proportional hazard regression method were used for survival analyses. RESULTS: A total of 112 metastatic breast cancer patients with BMs were included of which 24 were ≥65 years old and 88 were <65 years old. Median age at RT was 72 years (range 65-84) compared to 52 years (31-64) in younger patients. There were significantly higher number of older women with ER/PR positive disease (75% vs. 49%, p = 0.036), while younger patients were more frequently triple negative (32% vs. 12%, p = 0.074) and HER2 positive (42% vs. 29%, p = 0.3). Treatment-related adverse events were similar in both groups. Overall, 14.3% patients had any grade radiation necrosis (RN) (older vs. young: 8.3% vs. 16%, p = 0.5) while 5.4% had grade 3 or higher RN (0% vs. 6.8%, p = 0.7). Median OS after RT was poorer in older patients compared to younger patients (9.5 months vs. 14.5 months, p = 0.037), while intracranial PFS from RT was similar between the two groups (9.7 months vs. 7.1 months, p = 0.580). On univariate analysis, significant predictors of OS were age ≥65 years old (hazard risk, HR = 1.70, p = 0.048), KPS ≤ 80 (HR = 2.24, p < 0.001), HER2 positive disease (HR = 0.46, p < 0.001), isolated CNS metastatic disease (HR = 0.29, p < 0.001), number of brain metastases treated with RT (HR = 1.06, p = 0.028), and fractionated SRS (HR = 0.53, p = 0.013). On multivariable analysis, KPS ≤ 80, HER2 negativity and higher number of brain metastases predicted for poorer survival, while age was not a significant factor for OS after adjusting for other variables. Patients who received systemic therapy after SRS had a significantly improved OS on univariate and multivariable analysis (HR = 0.32, p < 0.001). Number of brain metastases treated was the only factor predictive of worse PFS (HR = 1.06, p = 0.041), which implies a 6% additive risk of progression for every additional metastasis treated. CONCLUSIONS: Although older women had poorer OS than younger women, OS was similar after adjusting for KPS, extracranial progression, and systemic therapy; and there was no difference in rates of intracranial PFS, neurological deaths, and LMD in the different age groups. This study suggests that age alone may not play an independent role in treatment-selection and that outcomes for breast cancer patients with BMs and personalized decision-making including other clinical factors should be considered. Future studies are warranted to assess neurocognitive outcomes and other radiation treatment toxicities in older patients.

6.
Biomedicines ; 11(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36672606

RESUMEN

Many patients with non-metastatic breast cancer benefit from adjuvant radiation therapy after lumpectomy or mastectomy on the basis of many randomized trials. However, there are many patients that have such low risks of recurrence after surgery that de-intensification of therapy by either reducing the treatment volume or omitting radiation altogether may be appropriate options. On the other hand, dose intensification may be necessary for more aggressive breast cancers. Until recently, these treatment decisions were based solely on clinicopathologic factors. Here, we review the current literature on the role of genomic assays as prognostic and/or predictive biomarkers to help guide adjuvant radiation therapy decision-making.

7.
Biomedicines ; 10(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35885067

RESUMEN

Glioblastoma (GBM) is an aggressive primary brain tumor that is associated with a poor prognosis and quality of life. The standard of care has changed minimally over the past two decades and currently consists of surgery followed by radiotherapy (RT), concomitant and adjuvant temozolomide, and tumor treating fields (TTF). Factors such as tumor hypoxia and the presence of glioma stem cells contribute to the radioresistant nature of GBM. In this review, we discuss the current treatment modalities, mechanisms of radioresistance, and studies that have evaluated promising radiosensitizers. Specifically, we highlight small molecules and immunotherapy agents that have been studied in conjunction with RT in clinical trials. Recent preclinical studies involving GBM radiosensitizers are also discussed.

8.
Biomedicines ; 10(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36140312

RESUMEN

Brain metastases are a devastating sequela of common primary cancers (e.g., lung, breast, and skin) and have limited effective therapeutic options. Previously, systemic chemotherapy failed to demonstrate significant benefit in patients with brain metastases, but in recent decades, targeted therapies and more recently immune checkpoint inhibitors (ICIs) have yielded promising results in preclinical and clinical studies. Furthermore, there is significant interest in harnessing the immunomodulatory effects of radiotherapy (RT) to synergize with ICIs. Herein, we discuss studies evaluating the impact of RT dose and fractionation on the immune response, early studies supporting the synergistic interaction between RT and ICIs, and ongoing clinical trials assessing the benefit of combination therapy in patients with brain metastases.

9.
Oncotarget ; 9(98): 37097-37111, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30647847

RESUMEN

The presence of an isocitrate dehydrogenase (IDH1/2) mutation in gliomas is associated with favorable outcomes compared to gliomas without the mutation (IDH1/2 wild-type, WT). The underlying biological mechanisms accounting for improved clinical outcomes in IDH1/2 mutant gliomas remain poorly understood, but may, in part, be due to the glioma CpG island methylator phenotype (G-CIMP) and epigenetic silencing of genes. We performed profiling of IDH1/2 WT versus IDH1/2 mutant Grade II and III gliomas and identified transgelin-2 (TAGLN2), an oncogene and actin-polymerizing protein, to be expressed at significantly higher levels in IDH1/2 WT gliomas compared to IDH1/2 mutant gliomas. This differential expression of TAGLN2 was primarily due to promoter hypermethylation in IDH1/2 mutant gliomas, suggesting involvement of TAGLN2 in the G-CIMP. Our results also suggest that TAGLN2 may be involved in progression due to higher expression in glioblastomas compared to IDH1/2 WT gliomas of lower grades. Furthermore, our results suggest that TAGLN2 functions as an oncogene by contributing to proliferation and invasion when overexpressed in IDH1/2 WT glioma cells. Taken together, this study demonstrates a possible link between increased TAGLN2 expression, invasion and poor patient outcomes in IDH1/2 WT gliomas and identifies TAGLN2 as a potential novel therapeutic target for IDH1/2 WT gliomas.

10.
BMC Res Notes ; 4: 397, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21989294

RESUMEN

BACKGROUND: Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. METHODS: Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. RESULTS AND DISCUSSION: NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. CONCLUSIONS: Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA