Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 129(11): 1727-1746, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37752289

RESUMEN

In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.


Asunto(s)
Neoplasias Encefálicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Biopsia Líquida/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Encéfalo/patología , Biomarcadores de Tumor/genética
2.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31463571

RESUMEN

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Distroglicanos/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/fisiología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/cirugía , Transformación Celular Neoplásica , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Glioma/irrigación sanguínea , Glioma/cirugía , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias
3.
Genes Dev ; 25(24): 2594-609, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22190458

RESUMEN

Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Glioma/fisiopatología , Células Madre Mesenquimatosas/citología , Células Madre Neoplásicas/citología , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Células Tumorales Cultivadas
4.
J Neurosci ; 35(45): 15097-112, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558781

RESUMEN

Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/metabolismo , Glioblastoma/clasificación , Glioblastoma/metabolismo , MicroARNs/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Animales , Biomarcadores de Tumor/biosíntesis , Neoplasias Encefálicas/diagnóstico , Células Cultivadas , Glioblastoma/diagnóstico , Humanos , Masculino , Ratones , Ratones Desnudos , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia/tendencias
5.
Cancer Cell ; 12(4): 355-66, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17936560

RESUMEN

It is believed that Mdm2 suppresses p53 in two ways: transcriptional inhibition by direct binding, and degradation via its E3 ligase activity. To study these functions physiologically, we generated mice bearing a single-residue substitution (C462A) abolishing the E3 function without affecting p53 binding. Unexpectedly, homozygous mutant mice died before E7.5, and deletion of p53 rescued the lethality. Furthermore, reintroducing a switchable p53 by crossing with p53ER(TAM) mice surprisingly demonstrated that the mutant Mdm2(C462A) was rapidly degraded in a manner indistinguishable from that of the wild-type Mdm2. Hence, our data indicate that (1) the Mdm2-p53 physical interaction, without Mdm2-mediated p53 ubiquitination, cannot control p53 activity sufficiently to allow early mouse embryonic development, and (2) Mdm2's E3 function is not required for Mdm2 degradation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Sustitución de Aminoácidos , Animales , Células Cultivadas , Daño del ADN , Regulación hacia Abajo , Embrión de Mamíferos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Rayos gamma , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Genotipo , Edad Gestacional , Homocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Transcripción Genética/efectos de la radiación , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
6.
Cancer Cell ; 42(1): 85-100.e6, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38157865

RESUMEN

Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.


Asunto(s)
Interleucina-17 , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Receptores de Interleucina-17/genética , Ratones Noqueados , Transducción de Señal , Neoplasias Pancreáticas/patología
7.
Neuro Oncol ; 26(5): 826-839, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237157

RESUMEN

BACKGROUND: Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS: Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS: We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS: These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glicoproteínas de Membrana , Fagocitosis , Receptores Inmunológicos , Animales , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Transducción de Señal
8.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066184

RESUMEN

Glioblastomas (GBMs) are tumors of the central nervous system that remain recalcitrant to both standard of care chemo-radiation and immunotherapies. Emerging approaches to treat GBMs include depletion or re-education of innate immune cells including microglia (MG) and macrophages (MACs). Here we show myeloid cell restricted expression of triggering receptor expressed on myeloid cells 2 (TREM2) across low- and high-grade human gliomas. TREM2 expression did not correlate with immunosuppressive pathways, but rather showed strong positive association with phagocytosis markers such as lysozyme (LYZ) and CD163 in gliomas. In line with these observations in patient tumors, Trem2-/- mice did not exhibit improved survival compared to wildtype (WT) mice when implanted with mouse glioma cell lines, unlike observations previously seen in peripheral tumor models. Gene expression profiling revealed pathways related to inflammation, adaptive immunity, and autophagy that were significantly downregulated in tumors from Trem2-/- mice compared to WT tumors. Using ZsGreen-expressing CT-2A orthotopic implants, we found higher tumor antigen engulfment in Trem2+ MACs, MG, and dendritic cells. Our data uncover TREM2 as an important immunomodulator in gliomas and inducing TREM2 mediated phagocytosis can be a potential immunotherapeutic strategy for brain tumors.

9.
J Biol Chem ; 286(26): 23178-88, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21561870

RESUMEN

δ-Catenin is an Armadillo protein of the p120-catenin subfamily capable of modulating cadherin stability, small GTPase activity, and nuclear transcription. From yeast two-hybrid screening of a human embryonic stem cell cDNA library, we identified δ-catenin as a potential interacting partner of the caspase-3 protease, which plays essential roles in apoptotic as well as non-apoptotic processes. Interaction of δ-catenin with caspase-3 was confirmed using cleavage assays conducted in vitro, in Xenopus apoptotic extracts, and in cell line chemically induced contexts. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo repeat 6 of δ-catenin, was identified through peptide sequencing. Cleavage thus generates an amino-terminal (residues 1-816) and carboxyl-terminal (residues 817-1314) fragment, each containing about half of the central Armadillo domain. We found that cleavage of δ-catenin both abolishes its association with cadherins and impairs its ability to modulate small GTPases. Interestingly, 817-1314 possesses a conserved putative nuclear localization signal that may facilitate the nuclear targeting of δ-catenin in defined contexts. To probe for novel nuclear roles of δ-catenin, we performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating interaction with an uncharacterized KRAB family zinc finger protein, ZIFCAT. Our results indicate that ZIFCAT is nuclear and suggest that it may associate with DNA as a transcriptional repressor. We further determined that other p120 subfamily catenins are similarly cleaved by caspase-3 and likewise bind ZIFCAT. Our findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120-catenin subfamily members, facilitating the coordinate modulation of cadherins, small GTPases, and nuclear functions.


Asunto(s)
Apoptosis/fisiología , Caspasa 3/metabolismo , Cateninas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Animales , Cadherinas/genética , Cadherinas/metabolismo , Caspasa 3/genética , Cateninas/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos , Xenopus laevis , Catenina delta
10.
Semin Immunopathol ; 44(5): 725-738, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35508671

RESUMEN

Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis-especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.


Asunto(s)
Sistema Nervioso , Neurogénesis , Adulto , Muerte Celular , Homeostasis , Humanos , Neurogénesis/fisiología , Neuronas
11.
Front Oncol ; 12: 941657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059614

RESUMEN

Treatment-resistant glioma stem cells are thought to propagate and drive growth of malignant gliomas, but their markers and our ability to target them specifically are not well understood. We demonstrate that podoplanin (PDPN) expression is an independent prognostic marker in gliomas across multiple independent patient cohorts comprising both high- and low-grade gliomas. Knockdown of PDPN radiosensitized glioma cell lines and glioma-stem-like cells (GSCs). Clonogenic assays and xenograft experiments revealed that PDPN expression was associated with radiotherapy resistance and tumor aggressiveness. We further demonstrate that knockdown of PDPN in GSCs in vivo is sufficient to improve overall survival in an intracranial xenograft mouse model. PDPN therefore identifies a subset of aggressive, treatment-resistant glioma cells responsible for radiation resistance and may serve as a novel therapeutic target.

12.
Reports (MDPI) ; 4(4)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35937580

RESUMEN

"Tumor-educated platelets" have recently generated substantial interest for the diagnosis of cancer. We hypothesized that tumor educated platelets from patients with brain tumors will reflect altered metabolism compared to platelets from healthy volunteers. Here, in a pilot study, we have employed nuclear magnetic resonance (NMR) spectroscopy in platelets from brain tumor patients to demonstrate altered metabolism compared to the platelets obtained from healthy volunteers.

13.
Mol Cell Biol ; 41(7): e0008221, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33941620

RESUMEN

Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.


Asunto(s)
Trastorno Autístico/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Inestabilidad Genómica/fisiología , Proteína BRCA1 , Reparación del ADN/fisiología , Replicación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Proto-Oncogenes Mas , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/genética
14.
iScience ; 23(9): 101450, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32882515

RESUMEN

Glioblastoma (GBM) is the most prevalent and aggressive tumor in the central nervous system. Surgical resection followed by concurrent radiotherapy (ionizing radiation [IR]) and temozolomide (TMZ) is the standard of care for GBM. However, a large subset of patients offer resistance or become adapted to TMZ due mainly to the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). Thus, alternative mechanisms of MGMT deregulation have been proposed but are heretofore unproven. We show that heterogeneous GBM cells express tunneling nanotubes (TNTs) upon oxidative stress and TMZ/IR treatment. We identified that MGMT protein diffused from resistant to sensitive cells upon exposure to TMZ/IR, resulting in protection against cytotoxic therapy in a TNT-dependent manner. In vivo analysis of resected GBM tumors support our hypothesis that the MGMT protein, but not its mRNA, was associated with TNT biomarkers. We propose that targeting TNT formation could be an innovative strategy to overcome treatment resistance in GBM.

15.
Neuro Oncol ; 22(2): 180-194, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31679017

RESUMEN

CNS immune defenses are marshaled and dominated by brain resident macrophages and microglia, which are the innate immune sentinels and frontline host immune barriers against various pathogenic insults. These myeloid lineage cells are the predominant immune population in gliomas and can constitute up to 30-50% of the total cellular composition. Parenchymal microglial cells and recruited monocyte-derived macrophages from the periphery exhibit disease-specific phenotypic characteristics with spatial and temporal distinctions and are heterogeneous subpopulations based on their molecular signatures. A preponderance of myeloid over lymphoid lineage cells during CNS inflammation, including gliomas, is a contrasting feature of brain immunity relative to peripheral immunity. Herein we discuss glioma-associated macrophage and microglia immune biology in the context of their identity, molecular drivers of recruitment, nomenclature and functional paradoxes, therapeutic reprogramming and polarization strategies, relevant challenges, and our perspectives on therapeutic modulation.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioma/inmunología , Macrófagos/inmunología , Microglía/inmunología , Animales , Humanos
16.
J Neurosurg ; 134(3): 721-732, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059178

RESUMEN

OBJECTIVE: Despite an aggressive multimodal therapeutic regimen, glioblastoma (GBM) continues to portend a grave prognosis, which is driven in part by tumor heterogeneity at both the molecular and cellular levels. Accordingly, herein the authors sought to identify metabolic differences between GBM tumor core cells and edge cells and, in so doing, elucidate novel actionable therapeutic targets centered on tumor metabolism. METHODS: Comprehensive metabolic analyses were performed on 20 high-grade glioma (HGG) tissues and 30 glioma-initiating cell (GIC) sphere culture models. The results of the metabolic analyses were combined with the Ivy GBM data set. Differences in tumor metabolism between GBM tumor tissue derived from within the contrast-enhancing region (i.e., tumor core) and that from the peritumoral brain lesions (i.e., tumor edge) were sought and explored. Such changes were ultimately confirmed at the protein level via immunohistochemistry. RESULTS: Metabolic heterogeneity in both HGG tumor tissues and GBM sphere culture models was identified, and analyses suggested that tyrosine metabolism may serve as a possible therapeutic target in GBM, particularly in the tumor core. Furthermore, activation of the enzyme tyrosine aminotransferase (TAT) within the tyrosine metabolic pathway influenced the noted therapeutic resistance of the GBM core. CONCLUSIONS: Selective inhibition of the tyrosine metabolism pathway may prove highly beneficial as an adjuvant to multimodal GBM therapies.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Tirosina/metabolismo , Secuencia de Bases , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Células Cultivadas , Quimioterapia Adyuvante , Sistemas de Liberación de Medicamentos , Glioma/patología , Humanos , Inmunohistoquímica , Metabolómica , Nitrógeno/metabolismo , Tirosina Transaminasa/metabolismo
17.
Cancer Rep (Hoboken) ; 2(6): e1216, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32721125

RESUMEN

BACKGROUND: Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS: Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS: GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/terapia , Quimioradioterapia/tendencias , Glioblastoma/terapia , Procedimientos Neuroquirúrgicos/tendencias , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Quimioradioterapia/métodos , Quimioterapia Adyuvante/métodos , Quimioterapia Adyuvante/tendencias , Ensayos Clínicos como Asunto , Análisis Mutacional de ADN , Resistencia a Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Terapia Molecular Dirigida/métodos , Mutación , Pronóstico , Supervivencia sin Progresión , Hipofraccionamiento de la Dosis de Radiación , Estados Unidos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cell Rep ; 26(7): 1893-1905.e7, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759398

RESUMEN

Unresectable glioblastoma (GBM) cells in the invading tumor edge can act as seeds for recurrence. The molecular and phenotypic properties of these cells remain elusive. Here, we report that the invading edge and tumor core have two distinct types of glioma stem-like cells (GSCs) that resemble proneural (PN) and mesenchymal (MES) subtypes, respectively. Upon exposure to ionizing radiation (IR), GSCs, initially enriched for a CD133+ PN signature, transition to a CD109+ MES subtype in a C/EBP-ß-dependent manner. Our gene expression analysis of paired cohorts of patients with primary and recurrent GBMs identified a CD133-to-CD109 shift in tumors with an MES recurrence. Patient-derived CD133-/CD109+ cells are highly enriched with clonogenic, tumor-initiating, and radiation-resistant properties, and silencing CD109 significantly inhibits these phenotypes. We also report a conserved regulation of YAP/TAZ pathways by CD109 that could be a therapeutic target in GBM.


Asunto(s)
Adaptación Fisiológica/genética , Glioma/radioterapia , Radiación Ionizante , Glioma/patología , Humanos
19.
Nat Med ; 25(1): 176-187, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30531922

RESUMEN

Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic glioma remain unknown. Here, we present the molecular landscape of low- and high-grade gliomas in patients affected by NF1 (NF1-glioma). We found that the predisposing germline mutation of the NF1 gene was frequently converted to homozygosity and the somatic mutational load of NF1-glioma was influenced by age and grade. High-grade tumors harbored genetic alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative Lengthening of Telomere, and were enriched in genetic alterations of transcription/chromatin regulation and PI3 kinase pathways. Low-grade tumors exhibited fewer mutations that were over-represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-gliomas displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA methylation assigned NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-type subgroup enriched with ATRX mutations. Thus, the profiling of NF1-glioma defined a distinct landscape that recapitulates a subset of sporadic tumors.


Asunto(s)
Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Glioma/complicaciones , Glioma/genética , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Adolescente , Adulto , Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/inmunología , Niño , Preescolar , Estudios de Cohortes , Metilación de ADN/genética , Femenino , Mutación de Línea Germinal/genética , Glioma/inmunología , Humanos , Masculino , Persona de Mediana Edad , Neurofibromina 1/genética , Reproducibilidad de los Resultados , Linfocitos T/inmunología , Transcriptoma/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Adulto Joven
20.
FEBS Lett ; 582(21-22): 3193-200, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18708058

RESUMEN

Here we show that in contrast to other cancer types, tumor necrosis factor (TNF)-alpha suppresses YKL-40 expression in glioma cell lines in a nuclear factor kappaB (NF-kappaB) dependent manner. Even though TNF-alpha causes recruitment of p65 and p50 subunits of NF-kappaB to the YKL-40 promoter in all cell types, recruitment of histone deacetylases (HDAC)-1 and -2, and a consequent deacetylation of histone H3 at the YKL-40 promoter occurs only in glioma cells. Importantly, using chromatin immunoprecipitation assays in frozen glioblastoma multiforme tissues, we show that YKL-40 levels decrease consistent with HDAC1 recruitment despite high levels of nuclear p-p65. This study presents a paradigm for NF-kappaB regulation of one of its targets in a strict cell type specific manner.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glicoproteínas/genética , Histona Desacetilasas/metabolismo , FN-kappa B/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Adipoquinas , Línea Celular Tumoral , Proteína 1 Similar a Quitinasa-3 , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Glioma/genética , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Histonas/metabolismo , Humanos , Lectinas , Subunidad p50 de NF-kappa B/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA