Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916994

RESUMEN

The HMGB1 protein typically serves as a DNA chaperone that assists DNA-repair enzymes and transcription factors but can translocate from the nucleus to the cytoplasm or even to extracellular space upon some cellular stimuli. One of the factors that triggers the translocation of HMGB1 is its phosphorylation near a nuclear localization sequence by protein kinase C (PKC), although the exact modification sites on HMGB1 remain ambiguous. In this study, using spectroscopic methods, we investigated the HMGB1 phosphorylation and its impact on the molecular properties of the HMGB1 protein. Our nuclear magnetic resonance (NMR) data on the full-length HMGB1 protein showed that PKC specifically phosphorylates the A-box domain, one of the DNA binding domains of HMGB1. Phosphorylation of S46 and S53 was particularly efficient. Over a longer reaction time, PKC phosphorylated some additional residues within the HMGB1 A-box domain. Our fluorescence-based binding assays showed that the phosphorylation significantly reduces the binding affinity of HMGB1 for DNA. Based on the crystal structures of HMGB1-DNA complexes, this effect can be ascribed to electrostatic repulsion between the negatively charged phosphate groups at the S46 side chain and DNA backbone. Our data also showed that the phosphorylation destabilizes the folding of the A-box domain. Thus, phosphorylation by PKC weakens the DNA-binding affinity and folding stability of HMGB1.

2.
J Biol Chem ; 298(11): 102577, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220391

RESUMEN

Neutrophil extracellular traps (NETs) are produced through ejection of genomic DNA by neutrophils into extracellular space and serve as a weapon to fight against pathogens. Neutrophil elastase, a serine protease loaded on NETs, attacks and kills pathogens, while extracellular high-mobility-group-box-1 (HMGB1) protein serves as a danger signal to other cells. How the action of these factors is coordinated as part of the innate immune response is not fully understood. In this article, using biochemical and biophysical approaches, we demonstrate that DNA mediates specific proteolysis of HMGB1 by neutrophil elastase and that the proteolytic processing remarkably enhances binding activities of extracellular HMGB1. Through the DNA-mediated proteolysis of HMGB1 by neutrophil elastase, the negatively charged segment containing D/E repeats is removed from HMGB1. This proteolytic removal of the C-terminal tail causes a substantial increase in binding activities of HMGB1 because the D/E repeats are crucial for dynamic autoinhibition via electrostatic interactions. Our data on the oxidized HMGB1 (i.e., 'disulfide HMGB1') protein show that the truncation substantially increases HMGB1's affinities for the toll-like receptor TLR4•MD-2 complex, DNA G-quadruplex, and the Holliday junction DNA structure. The DNA-mediated proteolysis of HMGB1 by neutrophil elastase in NETs may promote the function of extracellular HMGB1 as a damage-associated molecular pattern that triggers the innate immune response of nearby cells.


Asunto(s)
Trampas Extracelulares , Proteína HMGB1 , Elastasa de Leucocito/metabolismo , Proteína HMGB1/metabolismo , Proteolisis , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , ADN/metabolismo
3.
Biophys J ; 121(18): 3562-3570, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35754184

RESUMEN

Counterions are important constituents for the structure and function of nucleic acids. Using 7Li and 133Cs nuclear magnetic resonance (NMR) spectroscopy, we investigated how ionic radii affect the behavior of counterions around DNA through diffusion measurements of Li+ and Cs+ ions around a 15-bp DNA duplex. Together with our previous data on 23Na+ and 15NH4+ ions around the same DNA under the same conditions, we were able to compare the dynamics of four different monovalent ions around DNA. From the apparent diffusion coefficients at varied concentrations of DNA, we determined the diffusion coefficients of these cations inside and outside the ion atmosphere around DNA (Db and Df, respectively). We also analyzed ionic competition with K+ ions for the ion atmosphere and assessed the relative affinities of these cations for DNA. Interestingly, all cations (i.e., Li+, Na+, NH4+, and Cs+) analyzed by diffusion NMR spectroscopy exhibited nearly identical Db/Df ratios despite the differences in their ionic radii, relative affinities, and diffusion coefficients. These results, along with the theoretical relationship between diffusion and entropy, suggest that the entropy change due to the release of counterions from the ion atmosphere around DNA is also similar regardless of the monovalent ion types. These findings and the experimental diffusion data on the monovalent ions are useful for examination of computational models for electrostatic interactions or ion solvation.


Asunto(s)
ADN , Sodio , Cationes/química , Cationes Monovalentes/química , Cesio/química , ADN/química , Iones , Litio/química , Sodio/química , Electricidad Estática
4.
Anal Chem ; 94(5): 2444-2452, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35080384

RESUMEN

Counterions are vital for the structure and function of biomolecules. However, the behavior of counterions remains elusive due to the difficulty in characterizing mobile ions. Here, we demonstrate that the dynamics of cations around biological macromolecules can be revealed by 23Na diffusion nuclear magnetic resonance (NMR) spectroscopy. NMR probe hardware capable of generating strong magnetic field gradients enables 23Na NMR-based diffusion measurements for Na+ ions in solutions of biological macromolecules and their complexes. The dynamic properties of Na+ ions interacting with the macromolecules can be investigated using apparent 23Na diffusion coefficients measured under various conditions. Our diffusion data clearly show that Na+ ions retain high mobility within the ion atmosphere around DNA. The 23Na diffusion NMR method also permits direct observation of the release of Na+ ions from nucleic acids upon protein-nucleic acid association. The entropy change due to the ion release can be estimated from the diffusion data.


Asunto(s)
ADN , Sodio , Cationes , ADN/química , Difusión , Espectroscopía de Resonancia Magnética/métodos , Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA