Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunol Rev ; 307(1): 134-144, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092042

RESUMEN

Better treatment of autoimmune diseases requires an improved understanding of the cellular and molecular mechanisms that lead to the breakdown of immune tolerance. The discovery of individuals with germline mutations in PIK3CD (which encodes the p110δ catalytic subunit of PI3K) has revealed the importance of regulated PI3Kδ activity to maintain tolerance. These patients display a range of symptoms including both immunodeficiency and autoimmunity. Here, we discuss recent advances in our understanding of how dysregulated PI3Kδ signaling affects the activation and differentiation of multiple cell types leading to the production of autoantibodies in these patients. This has lessons, not only for the treatment of these patients, but also for the potential role of dysregulated PI3Kδ in other patients with autoimmune conditions.


Asunto(s)
Enfermedades Autoinmunes , Síndromes de Inmunodeficiencia , Enfermedades Autoinmunes/genética , Autoinmunidad/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Humanos , Síndromes de Inmunodeficiencia/genética , Transducción de Señal/genética
2.
Curr Top Microbiol Immunol ; 436: 235-254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243847

RESUMEN

Phosphatidylinositol-3-kinases (PI3K) control many aspects of cellular activation and differentiation and play an important role in B cells biology. Three different classes of PI3K have been described, all of which are expressed in B cells. However, it is the class IA PI3Ks, and the p110δ catalytic subunit in particular, which seem to play the most critical role in B cells. Here we discuss the important role that class IA PI3K plays in B cell development, activation and differentiation, as well as examine what is known about the other classes of PI3Ks in B cells.


Asunto(s)
Linfocitos B , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositoles , Isoformas de Proteínas
3.
Immunol Cell Biol ; 98(6): 467-479, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32348596

RESUMEN

Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.


Asunto(s)
Formación de Anticuerpos , Linfocitos B/inmunología , Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Autoinmunidad , Humanos , Síndromes de Inmunodeficiencia/genética , Enfermedades de Inmunodeficiencia Primaria/genética
4.
J Allergy Clin Immunol ; 143(1): 276-291.e6, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29800648

RESUMEN

BACKGROUND: Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K), result in hyperactivation of the PI3K-AKT-mechanistic target of rapamycin pathway and underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalovirus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms underlying disease pathogenesis remain unknown. OBJECTIVE: Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this and other EBV-opathies. METHODS: We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpesviruses, including EBV. RESULTS: PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. CONCLUSIONS: PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity to herpesviruses and tumor surveillance.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Fosfatidilinositol 3-Quinasa Clase I , Infecciones por Virus de Epstein-Barr , Mutación con Ganancia de Función , Enfermedades Genéticas Congénitas/inmunología , Herpesvirus Humano 4/inmunología , Células Asesinas Naturales/inmunología , Adolescente , Adulto , Anciano , Linfocitos B/inmunología , Linfocitos T CD8-positivos/patología , Diferenciación Celular/genética , Senescencia Celular/genética , Senescencia Celular/inmunología , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/inmunología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/patología , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Humanos , Vigilancia Inmunológica/genética , Células Asesinas Naturales/patología , Masculino , Persona de Mediana Edad
5.
J Allergy Clin Immunol ; 144(1): 236-253, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30738173

RESUMEN

BACKGROUND: Gain-of-function (GOF) mutations in PIK3CD cause a primary immunodeficiency characterized by recurrent respiratory tract infections, susceptibility to herpesvirus infections, and impaired antibody responses. Previous work revealed defects in CD8+ T and B cells that contribute to this clinical phenotype, but less is understood about the role of CD4+ T cells in disease pathogenesis. OBJECTIVE: We sought to dissect the effects of increased phosphoinositide 3-kinase (PI3K) signaling on CD4+ T-cell function. METHODS: We performed detailed ex vivo, in vivo, and in vitro phenotypic and functional analyses of patients' CD4+ T cells and a novel murine disease model caused by overactive PI3K signaling. RESULTS: PI3K overactivation caused substantial increases in numbers of memory and follicular helper T (TFH) cells and dramatic changes in cytokine production in both patients and mice. Furthermore, PIK3CD GOF human TFH cells had dysregulated phenotype and function characterized by increased programmed cell death protein 1, CXCR3, and IFN-γ expression, the phenotype of a TFH cell subset with impaired B-helper function. This was confirmed in vivo in which Pik3cd GOF CD4+ T cells also acquired an aberrant TFH phenotype and provided poor help to support germinal center reactions and humoral immune responses by antigen-specific wild-type B cells. The increase in numbers of both memory and TFH cells was largely CD4+ T-cell extrinsic, whereas changes in cytokine production and TFH cell function were cell intrinsic. CONCLUSION: Our studies reveal that CD4+ T cells with overactive PI3K have aberrant activation and differentiation, thereby providing mechanistic insight into dysfunctional antibody responses in patients with PIK3CD GOF mutations.


Asunto(s)
Linfocitos T CD4-Positivos , Diferenciación Celular , Fosfatidilinositol 3-Quinasas/genética , Animales , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Mutación con Ganancia de Función , Humanos , Ratones , Fenotipo
6.
J Clin Immunol ; 39(2): 148-158, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30911953

RESUMEN

"This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold," she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up. While this describes the adventures of Goldilocks in the classic fairytale "The Story of Goldilocks and the Three Bears," it is an ideal analogy for the need for balanced signaling mediated by phosphatidylinositol-3-kinase (PI3K), a key signaling hub in immune cells. Either too little or too much PI3K activity is deleterious, even pathogenic-it needs to be "just right"! This has been elegantly demonstrated by the identification of inborn errors of immunity in key components of the PI3K pathway, and the impact of these mutations on immune regulation. Detailed analyses of patients with germline activating mutations in PIK3CD, as well as the parallel generation of novel murine models of this disease, have shed substantial light on the role of PI3K in lymphocyte development and differentiation, and mechanisms of disease pathogenesis resulting not only from PIK3CD mutations but genetic lesions in other components of the PI3K pathway. Furthermore, by being able to pharmacologically target PI3K, these monogenic conditions have provided opportunities for the implementation of precision medicine as a therapy, as well as to gain further insight into the consequences of modulating the PI3K pathway in clinical settings.


Asunto(s)
Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/inmunología , Animales , Linfocitos B/inmunología , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/inmunología , Mutación con Ganancia de Función , Humanos , Transducción de Señal , Linfocitos T/inmunología
7.
Front Immunol ; 14: 1095257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960072

RESUMEN

Introduction: Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods: Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion: Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.


Asunto(s)
Mutación con Ganancia de Función , Linfoma de Células B Grandes Difuso , Ratones , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Guanilato Ciclasa/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Mutación , Linfoma de Células B Grandes Difuso/patología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo
8.
J Exp Med ; 220(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943234

RESUMEN

Heterozygous loss-of-function (LOF) mutations in PIK3R1 (encoding phosphatidylinositol 3-kinase [PI3K] regulatory subunits) cause activated PI3Kδ syndrome 2 (APDS2), which has a similar clinical profile to APDS1, caused by heterozygous gain-of-function (GOF) mutations in PIK3CD (encoding the PI3K p110δ catalytic subunit). While several studies have established how PIK3CD GOF leads to immune dysregulation, less is known about how PIK3R1 LOF mutations alter cellular function. By studying a novel CRISPR/Cas9 mouse model and patients' immune cells, we determined how PIK3R1 LOF alters cellular function. We observed some overlap in cellular defects in APDS1 and APDS2, including decreased intrinsic B cell class switching and defective Tfh cell function. However, we also identified unique APDS2 phenotypes including defective expansion and affinity maturation of Pik3r1 LOF B cells following immunization, and decreased survival of Pik3r1 LOF pups. Further, we observed clear differences in the way Pik3r1 LOF and Pik3cd GOF altered signaling. Together these results demonstrate crucial differences between these two genetic etiologies.


Asunto(s)
Síndromes de Inmunodeficiencia , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasas/genética , Mutación/genética , Linfocitos B , Síndrome , Diferenciación Celular/genética , Síndromes de Inmunodeficiencia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética
9.
J Exp Med ; 217(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841125

RESUMEN

Antibody-mediated autoimmune diseases are a major health burden. However, our understanding of how self-reactive B cells escape self-tolerance checkpoints to secrete pathogenic autoantibodies remains incomplete. Here, we demonstrate that patients with monogenic immune dysregulation caused by gain-of-function mutations in PIK3CD, encoding the p110δ catalytic subunit of phosphoinositide 3-kinase (PI3K), have highly penetrant secretion of autoreactive IgM antibodies. In mice with the corresponding heterozygous Pik3cd activating mutation, self-reactive B cells exhibit a cell-autonomous subversion of their response to self-antigen: instead of becoming tolerized and repressed from secreting autoantibody, Pik3cd gain-of-function B cells are activated by self-antigen to form plasmablasts that secrete high titers of germline-encoded IgM autoantibody and hypermutating germinal center B cells. However, within the germinal center, peripheral tolerance was still enforced, and there was selection against B cells with high affinity for self-antigen. These data show that the strength of PI3K signaling is a key regulator of pregerminal center B cell self-tolerance and thus represents a druggable pathway to treat antibody-mediated autoimmunity.


Asunto(s)
Formación de Anticuerpos/genética , Autoanticuerpos/inmunología , Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación con Ganancia de Función , Tolerancia Inmunológica/inmunología , Células Plasmáticas/inmunología , Animales , Autoanticuerpos/sangre , Autoantígenos/inmunología , Autoinmunidad/genética , Fosfatidilinositol 3-Quinasa Clase I/sangre , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Femenino , Centro Germinal/inmunología , Humanos , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/genética
10.
J Exp Med ; 215(8): 2073-2095, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30018075

RESUMEN

Gain-of-function (GOF) mutations in PIK3CD, encoding the p110δ subunit of phosphatidylinositide 3-kinase (PI3K), cause a primary immunodeficiency. Affected individuals display impaired humoral immune responses following infection or immunization. To establish mechanisms underlying these immune defects, we studied a large cohort of patients with PIK3CD GOF mutations and established a novel mouse model using CRISPR/Cas9-mediated gene editing to introduce a common pathogenic mutation in Pik3cd In both species, hyperactive PI3K severely affected B cell development and differentiation in the bone marrow and the periphery. Furthermore, PI3K GOF B cells exhibited intrinsic defects in class-switch recombination (CSR) due to impaired induction of activation-induced cytidine deaminase (AID) and failure to acquire a plasmablast gene signature and phenotype. Importantly, defects in CSR, AID expression, and Ig secretion were restored by leniolisib, a specific p110δ inhibitor. Our findings reveal key roles for balanced PI3K signaling in B cell development and long-lived humoral immunity and memory and establish the validity of treating affected individuals with p110δ inhibitors.


Asunto(s)
Linfocitos B/citología , Linfocitos B/inmunología , Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación de Línea Germinal/genética , Fosfatidilinositol 3-Quinasas/genética , Animales , Afinidad de Anticuerpos/inmunología , Células de la Médula Ósea/citología , Diferenciación Celular , Proliferación Celular , Niño , Mutación con Ganancia de Función/genética , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulinas/metabolismo , Interleucinas/farmacología , Ratones , Modelos Animales , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Plasmáticas/metabolismo , Transducción de Señal
11.
PLoS One ; 12(1): e0170205, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28099498

RESUMEN

INTRODUCTION: Literature data have shown that the consumption of dietary proteins may cause modulatory effects on the host immune system, process denominated oral tolerance by bystander suppression. It has been shown that the bystander suppression induced by dietary proteins can improve inflammatory diseases such as experimental arthritis. Here, we evaluated the effects of oral tolerance induced by ingestion of ovalbumin (OVA) on TNBS-induced colitis in mice, an experimental model for human Crohn's disease. METHODS AND RESULTS: Colitis was induced in BALB/c mice by instilling a single dose of TNBS (100 mg/kg) in ethanol into the colon. Tolerized mice received OVA (4mg/mL) dissolved in the drinking water for seven consecutive days, prior to or concomitantly with the intrarectal instillation. Control groups received protein-free water and ethanol by intrarectal route. We observed that either the prior or concomitant induction of oral tolerance were able to reduce the severity of colitis as noted by recovery of body weight gain, improvement of clinical signs and reduction of histological abnormalities. The in vitro proliferation of spleen cells from tolerant colitic mice was lower than that of control mice, the same as the frequencies of CD4+ T cells secreting IL-17 and IFN-γ. The frequencies of regulatory T cells and T cells secreting IL-10 have increased significantly in mice orally treated with OVA. The levels of inflammatory cytokines (IL-17A, TNF-α, IL-6 and IFN-γ) were lower in supernatants of cells from tolerant colitic mice, whereas IL-10 levels were higher. CONCLUSION: Our data show that the modulation of immune response induced by oral tolerance reduces the severity of experimental colitis. Such modulation may be partially attributed to the increase of Treg cells and reduction of pro-inflammatory cytokines in peripheral lymphoid organs of tolerant mice by bystander suppression.


Asunto(s)
Efecto Espectador/inmunología , Colitis/inmunología , Tolerancia Inmunológica/inmunología , Ovalbúmina/inmunología , Linfocitos T Reguladores/inmunología , Animales , Colitis/inducido químicamente , Femenino , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-10/inmunología , Interleucina-10/metabolismo , Interleucina-17/inmunología , Interleucina-17/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/farmacología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Immunol Res ; 2015: 856707, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26543876

RESUMEN

Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tolerancia Inmunológica , Inmunología del Trasplante , Inmunidad Adaptativa , Animales , Comunicación Celular/inmunología , Rechazo de Injerto/inmunología , Rechazo de Injerto/terapia , Humanos , Inmunidad Innata , Inmunoterapia , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA