Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Hyperthermia ; 37(1): 1052-1059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32892667

RESUMEN

PURPOSE: When doxorubicin (DOX) is administered via lyso-thermosensitive liposomes (LTLD), mild hyperthermia enhances localized delivery to heated vs. unheated tumors. The optimal LTLD dose and the impact of different doses on systemic drug distribution are unknown.Materials and methods: In this study, we evaluated local and systemic DOX delivery with three LTLD doses (0.1, 0.5, and 2.5 mg/kg) in a Vx2 rabbit tumor model. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the intended heating duration (40 min).Results: DOX concentration in tissues delivered from LTLD combined with MR-HIFU mild hyperthermia are dose-dependent, including heated/unheated tumor, heart, and other healthy organs. Higher DOX accumulation and tumor-to-heart drug concentration ratio, defined as the ratio of DOX delivered into the tumor vs the heart, were observed in heated tumors compared to unheated tumors in all three tested doses. The DOX uptake efficiency for each mg/kg of LTLD injected IV of heated tumor was significantly higher than that of unheated tumor and heart within the tested dose range (0.1-2.5 mg/kg). The DOX uptake for the heart linearly scaled up as a function of dose while that for the heated tumor showed some evidence of saturation at the high dose of 2.5 mg/kg.Conclusions: These results provide guidance on clinical protocol design of hyperthermia-triggered drug delivery.


Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Antibióticos Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Hipertermia , Liposomas , Neoplasias/terapia , Conejos
2.
Int J Hyperthermia ; 36(1): 196-203, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30541350

RESUMEN

Thermosensitive liposomal doxorubicin (LTSL-Dox) combined with mild hyperthermia enhances the localized delivery of doxorubicin (Dox) within a heated region. The optimal heating duration and the impact of extended heating on systemic drug distribution are unknown. Here we evaluated local and systemic Dox delivery with two different mild hyperthermia durations (42 °C for 10 or 40 minutes) in a Vx2 rabbit tumor model. We hypothesized that longer duration of hyperthermia would increase Dox concentration in heated tumors without increasing systemic exposure. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the prescribed heating durations. Forty-minutes of heating resulted in a nearly 6-fold increase in doxorubicin concentration in heated vs unheated tumors in the same animals. Therapeutic ratio, defined as the ratio of Dox delivered into the heated tumor vs the heart, increased from 1.9-fold with 10 minutes heating to 4.4-fold with 40 minutes heating. MR-HIFU can be used to guide, deliver and monitor mild hyperthermia of a Vx2 tumor model in a rabbit model, and an increased duration of heating leads to higher Dox deposition from LTSL-Dox in a target tumor without a concomitant increase in systemic exposure. Results from this preclinical study can be used to help establish clinical treatment protocols for hyperthermia mediated drug delivery.


Asunto(s)
Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapéutico , Calefacción/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Animales , Doxorrubicina/farmacología , Femenino , Humanos , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Conejos
3.
Int J Hyperthermia ; 36(1): 1084-1097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31707872

RESUMEN

Background: The use of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) to deliver mild hyperthermia requires stable temperature mapping for long durations. This study evaluates the effects of respiratory motion on MR thermometry precision in pediatric subjects and determines the in vivo feasibility of circumventing breathing-related motion artifacts by delivering MR thermometry-controlled HIFU mild hyperthermia during repeated forced breath holds.Materials and methods: Clinical and preclinical studies were conducted. Clinical studies were conducted without breath-holds. In phantoms, breathing motion was simulated by moving an aluminum block towards the phantom along a sinusoidal trajectory using an MR-compatible motion platform. In vivo experiments were performed in ventilated pigs. MR thermometry accuracy and stability were evaluated.Results: Clinical data confirmed acceptable MR thermometry accuracy (0.12-0.44 °C) in extremity tumors, but not in the tumors in the chest/spine and pelvis. In phantom studies, MR thermometry accuracy and stability improved to 0.37 ± 0.08 and 0.55 ± 0.18 °C during simulated breath-holds. In vivo MR thermometry accuracy and stability in porcine back muscle improved to 0.64 ± 0.22 and 0.71 ± 0.25 °C during breath-holds. MR-HIFU hyperthermia delivered during intermittent forced breath holds over 10 min duration heated an 18-mm diameter target region above 41 °C for 10.0 ± 1.0 min, without significant overheating. For a 10-min mild hyperthermia treatment, an optimal treatment effect (TIR > 9 min) could be achieved when combining 36-60 s periods of forced apnea with 60-155.5 s free-breathing.Conclusion: MR-HIFU delivery during forced breath holds enables stable control of mild hyperthermia in targets adjacent to moving anatomical structures.


Asunto(s)
Contencion de la Respiración , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Animales , Estudios de Factibilidad , Femenino , Porcinos
4.
J Magn Reson Imaging ; 46(2): 354-364, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28067975

RESUMEN

PURPOSE: To evaluate magnetization-prepared 3D T2 -weighted magnetic resonance imaging (MRI) measurements of acute tissue changes produced during ablative MR high-intensity focused ultrasound (MR-HIFU) exposures. MATERIALS AND METHODS: A clinical MR-HIFU system (3T) was used to generate thermal lesions (n = 24) in the skeletal muscles of three pigs. T1 -weighted, 2D T2 -weighted, and magnetization-prepared 3D T2 -weighted sequences were acquired before and after therapy to evaluate tissue changes following ablation. Tissues were harvested shortly after imaging, fixed in formalin, and gross-sectioned. Select lesions were processed into whole-mount sections. Lesion dimensions for each imaging sequence (length, width) and for gross sections (diameter of lesion core and rim) were assessed by three physicists. Contrast-to-background ratio between lesions and surrounding muscle was compared. RESULTS: Lesion dimensions on T1 and 2D T2 -weighted imaging sequences were well correlated (R2 ∼0.7). The contrast-to-background ratio between lesion and surrounding muscle was 7.4 ± 2.4 for the magnetization-prepared sequence versus 1.7 ± 0.5 for a conventional 2D T2 -weighted acquisition, and 7.0 ± 2.9 for a contrast-enhanced T1 -weighted sequence. Compared with diameter measured on gross pathology, all imaging sequences overestimated the lesion core by 22-33%, and underestimated the lesion rim by 6-13%. CONCLUSION: After MR-HIFU exposures, measurements of the acute thermal damage patterns in muscle using a magnetization-prepared 3D T2 -weighted imaging sequence correlate with 2D T2 -weighted and contrast-enhanced T1 -weighted imaging, and all agree well with histology. The magnetization-prepared sequence offers positive tissue contrast and does not require IV contrast agents, and may provide a noninvasive imaging evaluation of the region of acute thermal injury at multiple times during HIFU procedures. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:354-364.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Animales , Cateterismo , Medios de Contraste , Femenino , Calor , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Necrosis , Oxígeno , Relación Señal-Ruido , Porcinos
5.
Int J Hyperthermia ; 32(3): 254-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26892114

RESUMEN

Chronic non-healing wound infections require long duration antibiotic therapy, and are associated with significant morbidity and health-care costs. Novel approaches for efficient, readily-translatable targeted and localised antimicrobial delivery are needed. The objectives of this study were to 1) develop low temperature-sensitive liposomes (LTSLs) containing an antimicrobial agent (ciprofloxacin) for induced release at mild hyperthermia (∼42 °C), 2) characterise in vitro ciprofloxacin release, and efficacy against Staphylococcus aureus plankton and biofilms, and 3) determine the feasibility of localised ciprofloxacin delivery in combination with MR-HIFU hyperthermia in a rat model. LTSLs were loaded actively with ciprofloxacin and their efficacy was determined using a disc diffusion method, MBEC biofilm device, and scanning electron microscopy (SEM). Ciprofloxacin release from LTSLs was assessed in a physiological buffer by fluorescence spectroscopy, and in vivo in a rat model using MR-HIFU. Results indicated that < 5% ciprofloxacin was released from the LTSL at body temperature (37 °C), while >95% was released at 42 °C. Precise hyperthermia exposures in the thigh of rats using MR-HIFU during intravenous (i.v.) administration of the LTSLs resulted in a four fold greater local concentration of ciprofloxacin compared to controls (free ciprofloxacin + MR-HIFU or LTSL alone). The biodistribution of ciprofloxacin in unheated tissues was fairly similar between treatment groups. Triggered release at 42 °C from LTSL achieved significantly greater S. aureus killing and induced membrane deformation and changes in biofilm matrix compared to free ciprofloxacin or LTSL at 37 °C. This technique has potential as a method to deliver high concentration antimicrobials to chronic wounds.


Asunto(s)
Antibacterianos/administración & dosificación , Ciprofloxacina/administración & dosificación , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Liberación de Fármacos , Liposomas , Imagen por Resonancia Magnética , Masculino , Microscopía Electrónica de Rastreo , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Ratas Sprague-Dawley , Piel/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/ultraestructura , Temperatura
6.
Int J Hyperthermia ; 32(6): 673-87, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27210733

RESUMEN

UNLABELLED: There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41-45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. PURPOSE: The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. METHODS: Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. RESULTS: Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. CONCLUSION: Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Hipertermia Inducida , Animales , Femenino , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Neoplasias/terapia , Conejos , Termometría
7.
Int J Hyperthermia ; 31(8): 813-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26540488

RESUMEN

PURPOSE: Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. MATERIAL AND METHODS: The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. RESULTS: 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41-45 °C was 31.1 min within the ROI. CONCLUSIONS: The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Hipertermia Inducida , Animales , Diseño de Equipo , Ultrasonido Enfocado de Alta Intensidad de Ablación/instrumentación , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Fantasmas de Imagen , Ratas Sprague-Dawley , Programas Informáticos
8.
IEEE Trans Biomed Eng ; 69(6): 1880-1888, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813464

RESUMEN

OBJECTIVE: Non-invasive methods to enhance drug delivery and efficacy in the brain have been pursued for decades. Focused ultrasound hyperthermia (HT) combined with thermosensitive therapeutics have been demonstrated promising in enhancing local drug delivery to solid tumors. We hypothesized that the presence of microbubbles (MBs) combined with transcranial MR-guided focused ultrasound (MRgFUS) could be used to reduce the ultrasound power required for HT while simultaneously increasing drug delivery by locally opening the blood-brain barrier (BBB). METHODS: Transcranial HT (42 °C, 10 min) was performed in wild-type mice using a small animal MRgFUS system incorporated into a 9.4T Bruker MR scanner, with infusions of saline or Definity MBs with doses of 20 or 100 µl/kg/min (denoted as MB-20 and MB-100). MR thermometry data was continuously acquired as feedback for the ultrasound controller during the procedure. RESULTS: Spatiotemporally precise transcranial HT was achieved in both saline and MB groups. A significant ultrasound power reduction (-45.7%, p = 0.006) was observed in the MB-20 group compared to saline. Localized BBB opening was achieved in MB groups confirmed by CE-T1w MR images. There were no structural abnormalities, edema, hemorrhage, or acutemicroglial activation in all groups, confirmed by T2w MR imaging and histology. CONCLUSION: Our investigations showed that it is feasible and safe to achieve spatiotemporally precise brain HT at significantly reduced power and simultaneous localized BBB opening via transcranial MRgFUS and MBs. SIGNIFICANCE: This study provides a new synergistic brain drug delivery method with clinical translation potential.


Asunto(s)
Barrera Hematoencefálica , Hipertermia Inducida , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos/métodos , Retroalimentación , Imagen por Resonancia Magnética/métodos , Ratones , Microburbujas
9.
Phys Med Biol ; 67(20)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36055246

RESUMEN

Objective. Focused ultrasound (FUS) use with and without microbubbles (MB) for investigation of the blood-nerve barrier (BNB) within the peripheral nervous system (PNS) has been performed in this study. We evaluate the feasibility of BNB opening in a rodent sciatic nerve model by direct vision FUS treatment and provide preliminary results of magnetic resonance guided FUS (MRgFUS).Approach. Twenty rodent bilateral sciatic nerves were investigated. Rodents were treated using a benchtop FUS system to directly visualize nerve FUS studies. Definity MB, Evans blue dye (EB) and latex micro beads were injected during studies. Selected animals underwent further compound muscle action potential (CMAP) studies. Sonication peak pressure (MPa), width, duty-cycle and duration as well as MB concentration were varied to investigate effective pressure threshold. Further preliminary MRgFUS studies were performed on selected animals. Immunohistochemistry and histological analysis under florescent microscopy were performed at termination of experiments to verify treatment outcomes.Main results. Three ultrasound pressures and three microbubble concentrations at a single sonication frequency (476.5 kHz) were performed under direct open targeting. Histological analysis demonstrated nerve internal architecture disruption at 1.2 MPa with 166.7µl kg-1while 0.3 MPa, with 40µl kg-1MB concentration was the lower threshold for consistently observed disruption of the BNB without anatomical microarchitecture disruption. EB leakage was confirmed at the target region in histological evaluation of nerve following MB injection and FUS sonication. Supra-harmonic emissions were detected during FUS exposures following MB injection but not at baseline reference, indicating effective MB response and stable cavitation. CMAP amplitudes showed delayed onset latency and lower amplitudes in sonicated nerves compared to control nerves without evidence of complete conduction block, suggesting a transient BNB disruption, while at lower limit pressure subtle conduction changes were observed. In MRgFUS, targeted nerves demonstrated further contrast agent leak as well as supra-harmonic frequency detection.Significance. Opening of the BNB in the PNS was achieved using FUS and MB in a rodent model. Ongoing work aims to refine FUS parameters for drug delivery into the nerve after experimental transient BNB disruption.


Asunto(s)
Barrera Hematoencefálica , Medios de Contraste , Animales , Barrera Hematoencefálica/fisiología , Barrera Hematonerviosa , Sistemas de Liberación de Medicamentos/métodos , Azul de Evans , Látex , Imagen por Resonancia Magnética , Microburbujas , Sonicación/métodos
10.
ACS Chem Neurosci ; 12(15): 2820-2828, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34291630

RESUMEN

Transient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized 13C-labeled substrates in rodents: [1-13C]pyruvate and [1-13C]glycerate. The BBB is a rate-limiting factor for pyruvate delivery to the brain, and glycerate minimally passes through the BBB. First, cerebral imaging with hyperpolarized [1-13C]pyruvate resulted in an increase in total 13C signals (p = 0.05) after disrupting the BBB with FUS. Significantly higher levels of both [1-13C]lactate (lactate/total 13C signals, p = 0.01) and [13C]bicarbonate (p = 0.008) were detected in the FUS-applied brain region as compared to the contralateral FUS-unaffected normal-appearing brain region. The application of FUS without opening the BBB in a separate group of rodents resulted in comparable lactate and bicarbonate productions between the FUS-applied and the contralateral brain regions. Second, 13C imaging with hyperpolarized [1-13C]glycerate after opening the BBB showed increased [1-13C]glycerate delivery to the FUS-applied region (p = 0.04) relative to the contralateral side, and [1-13C]lactate production was consistently detected from the FUS-applied region. Our findings suggest that FUS accelerates the delivery of hyperpolarized molecules across the BBB and provides enhanced sensitivity to detect metabolic products in the brain; therefore, hyperpolarized 13C imaging with FUS may provide new opportunities to study cerebral metabolic pathways as well as various neurological pathologies.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Transporte Biológico , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Ácido Pirúvico , Ratas , Ratas Sprague-Dawley
11.
Sci Rep ; 9(1): 20020, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882579

RESUMEN

Real-time acoustic feedback control based on harmonic emissions of stimulated microbubbles may be important for facilitating the clinical adoption of focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening, both to ensure safe acoustic exposures, and to achieve repeatable and consistent opening. Previously our group demonstrated that successful BBB opening was achievable with both commercially available microbubbles and custom-made nanobubbles under acoustic feedback control. In a recent study, we demonstrated the acoustic control performance was not sensitive to the nanobubble concentration within 109-1011 bubbles/ml. The goal of this study was to examine the effect of the ultrasound target location in the rat brain on the acoustic control quality during BBB opening with nanobubbles. Temporal analysis of the received acoustic signals during each ultrasound pulse indicated that stable nanobubble oscillation was present throughout the entire 10 ms ultrasound exposure. The acoustic feedback control signals were very sensitive to the brain spatial location in rats. There appears to be a shared pattern of acoustic control stability in the brain across different animals, suggesting anatomical features are an underlying cause. The findings emphasize the importance of tuning acoustic feedback control algorithms for specific rodent brain regions of interest to ensure optimal performance.


Asunto(s)
Acústica , Barrera Hematoencefálica , Encéfalo/diagnóstico por imagen , Microburbujas , Nanoestructuras , Ondas Ultrasónicas , Algoritmos , Animales , Imagen por Resonancia Magnética , Masculino , Ratas
12.
Ultrasound Med Biol ; 45(8): 2174-2187, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072657

RESUMEN

Real-time acoustic feedback control based on harmonic emissions of stimulated microbubbles may serve as a way to achieve reliable blood-brain barrier (BBB) opening with focused ultrasound in the brain. Previously, we demonstrated BBB opening was possible using sub-micron bubbles (aka nanobubbles) and produced comparable results to commercially available microbubbles (Optison, Definity, etc.). The harmonic emissions and acoustic control were observed to be more consistent using nanobubbles, which warrants further study of BBB opening using these agents. This study examined the stimulated acoustic emissions of nanobubbles at different concentrations both in vitro and in vivo and evaluated BBB opening under real-time acoustic feedback control across concentrations. Original nanobubbles (1011 bubbles/mL) have long in vitro persistence (7.3 ± 3.3 min) and circulation time in rats (approximately 10 min) under exposures in this study, and both degraded with dilutions. With all three tested dilutions (1:1, 1:10 and 1:100), successful BBB opening was reliably achieved under real-time feedback control.


Asunto(s)
Acústica , Barrera Hematoencefálica/metabolismo , Retroalimentación , Microburbujas , Ultrasonido/métodos , Animales , Femenino , Técnicas In Vitro , Modelos Animales , Ratas , Ratas Sprague-Dawley , Sonicación
13.
Sci Rep ; 8(1): 7986, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789589

RESUMEN

Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Composición de Medicamentos/métodos , Microburbujas , Sonicación , Acústica/instrumentación , Algoritmos , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de la radiación , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Estudios de Factibilidad , Retroalimentación , Femenino , Microburbujas/normas , Ratas , Ratas Sprague-Dawley , Sonicación/instrumentación , Sonicación/métodos , Ultrasonido/instrumentación , Ultrasonido/métodos
14.
PLoS One ; 13(5): e0197380, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746579

RESUMEN

Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants.


Asunto(s)
Biopelículas , Hipertermia Inducida/métodos , Campos Magnéticos , Metales , Prótesis e Implantes , Infecciones Relacionadas con Prótesis/terapia , Acústica , Animales , Simulación por Computador , Femenino , Análisis de Elementos Finitos , Calor , Humanos , Rodilla , Ratones , Modelos Estadísticos , Necrosis , Seguridad del Paciente , Fantasmas de Imagen , Propiedades de Superficie , Tecnología Inalámbrica
15.
Med Phys ; 44(8): 3932-3938, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28513855

RESUMEN

PURPOSE: The protective effects of induced or even accidental hypothermia on the human body are widespread with several medical uses currently under active research. In vitro experiments using human cell lines have shown hypothermia provides a radioprotective effect that becomes more pronounced at large, single-fraction doses common to stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) treatments. This work describes the development of a system to evaluate local hypothermia for a radioprotective effect of the rat rectum during a large dose of radiation relevant to prostate SBRT. This includes the evaluation of a 3D-printed small animal rectal cooling device and the integration with a small animal irradiator. METHODS: A 3-cm long, dual-lumen rectal temperature control apparatus (RTCA) was designed in SOLIDWORKS CAD for 3D printing. The RTCA was capable of recirculating flow in a device small enough for insertion into the rat rectum, with a metal support rod for strength as well as visibility during radiation treatment planning. The outer walls of the RTCA comprised of thin heat shrink plastic, achieving efficient heat transfer into adjacent tissues. Following leak-proof testing, fiber optic temperature probes were used to evaluate the temperature over time when placed adjacent to the cooling device within the rat rectum. MRI thermometry characterized the relative temperature distribution in concentric ROIs surrounding the probe. Integration with an image-guided small animal irradiator and associated treatment planning system included evaluation for imaging artifacts and effect of brass tubing on dose calculation. RESULTS: The rectal temperature adjacent to the cooling device decreased from body temperature to 15°C within 10-20 min from device insertion and was maintained at 15 ± 3°C during active cooling for the evaluated time of one hour. MR thermometry revealed a steep temperature gradient with increasing distance from the cooling device with the desired temperature range maintained within the surrounding few millimeters. CONCLUSIONS: A 3D-printed rectal cooling device was fabricated for the purpose of inducing local hypothermia in the rat rectum. The RTCA was simply integrated with an image-guided small animal irradiator and Monte Carlo-based treatment planning system to facilitate an in vivo investigation of the radioprotective effect of hypothermia for late rectal toxicity following a single large dose of radiation.


Asunto(s)
Hipotermia Inducida , Traumatismos por Radiación/prevención & control , Recto/efectos de la radiación , Animales , Temperatura Corporal , Modelos Animales de Enfermedad , Humanos , Hipotermia , Masculino , Ratas
16.
Sci Rep ; 7(1): 7520, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790407

RESUMEN

Treatment of prosthetic joint infection (PJI) usually requires surgical replacement of the infected joint and weeks of antibiotic therapy, due to the formation of biofilm. We introduce a non-invasive method for thermal destruction of biofilm on metallic implants using high-frequency (>100 kHz) alternating magnetic fields (AMF). In vitro investigations demonstrate a >5-log reduction in bacterial counts after 5 minutes of AMF exposure. Confocal and scanning electron microscopy confirm removal of biofilm matrix components within 1 minute of AMF exposure, and combination studies of antibiotics and AMF demonstrate a 5-log increase in the sensitivity of Pseudomonas aeruginosa to ciprofloxacin. Finite element analysis (FEA) simulations demonstrate that intermittent AMF exposures can achieve uniform surface heating of a prosthetic knee joint. In vivo studies confirm thermal damage is confined to a localized region (<2 mm) around the implant, and safety can be achieved using acoustic monitoring for the presence of surface boiling. These initial studies support the hypothesis that AMF exposures can eradicate biofilm on metal implants, and may enhance the effectiveness of conventional antibiotics.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Ciprofloxacina/farmacología , Campos Magnéticos , Infecciones Relacionadas con Prótesis/terapia , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Biopelículas/crecimiento & desarrollo , Bovinos , Simulación por Computador , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Femenino , Análisis de Elementos Finitos , Ratones , Pruebas de Sensibilidad Microbiana , Prótesis e Implantes/microbiología , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/patología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/crecimiento & desarrollo
17.
Biomaterials ; 83: 257-68, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26790145

RESUMEN

Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2 × more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain.


Asunto(s)
Encéfalo/metabolismo , Ácidos Docosahexaenoicos/farmacología , Sistemas de Liberación de Medicamentos , Lipoproteínas LDL/farmacología , Nanopartículas/química , Ultrasonido , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Carbocianinas , Femenino , Humanos , Metaboloma/efectos de los fármacos , Nanopartículas/ultraestructura , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Técnicas Estereotáxicas
18.
J Ther Ultrasound ; 2: 13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25232482

RESUMEN

OBJECTIVE: The blood-brain barrier (BBB) protects the brain by preventing the entry of large molecules; this poses a major obstacle for the delivery of drugs to the brain. A novel technique using focused ultrasound (FUS) energy combined with microbubble contrast agents has been widely used for non-invasive trans-cranial BBB opening. Traditionally, FUS research is conducted with magnetic resonance imaging (MRI) guidance, which is expensive and poses physical limitations due to the magnetic field. A system that could allow researchers to test brain therapies without MR intervention could facilitate and accelerate translational research. METHODS: In this study, we present a novel FUS system that uses a custom-built FUS generator mounted on a motorized stereotaxic apparatus with embedded brain atlas to locally open the BBB in rodents. The system was initially characterized using a tissue-mimicking phantom. Rodent studies were also performed to evaluate whether non-invasive, localized BBB opening could be achieved using brain atlas-based targeting. Brains were exposed to pulsed focused ultrasound energy at 1.06 MHz in rats and 3.23 MHz in mice, with the focal pressure estimated to be 0.5-0.6 MPa through the skull. BBB opening was confirmed in gross tissue sections by the presence of Evans blue leakage in the exposed region of the brain and by histological assessment. RESULTS: The targeting accuracy of the stereotaxic system was better than 0.5 mm in the tissue-mimicking phantom. Reproducible localized BBB opening was verified with Evans blue dye leakage in 32/33 rats and had a targeting accuracy of ±0.3 mm. The use of higher frequency exposures in mice enabled a similar precision of localized BBB opening as was observed with the low frequency in the rat model. CONCLUSIONS: With this dedicated small-animal motorized stereotaxic-FUS system, we achieved accurate targeting of focused ultrasound exposures in the brain for non-invasive opening of the BBB. This system can be used as an alternative to MR-guided FUS and offers researchers the ability to perform efficient studies (30 min per experiment including preparation) at a reduced cost in a conventional laboratory environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA