Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 144(3): 769-780, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33764426

RESUMEN

Membrane trafficking is a complex, essential process in eukaryotic cells responsible for protein transport and processing. Deficiencies in vacuolar protein sorting (VPS) proteins, key regulators of trafficking, cause abnormal intracellular segregation of macromolecules and organelles and are linked to human disease. VPS proteins function as part of complexes such as the homotypic fusion and vacuole protein sorting (HOPS) tethering complex, composed of VPS11, VPS16, VPS18, VPS33A, VPS39 and VPS41. The HOPS-specific subunit VPS41 has been reported to promote viability of dopaminergic neurons in Parkinson's disease but to date has not been linked to human disease. Here, we describe five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function.


Asunto(s)
Ataxia Cerebelosa/genética , Predisposición Genética a la Enfermedad/genética , Trastornos del Neurodesarrollo/genética , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino , Linaje , Adulto Joven , Pez Cebra
2.
Hum Genomics ; 11(1): 28, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137650

RESUMEN

BACKGROUND: Most mitochondrial and cytoplasmic aminoacyl-tRNA synthetases (aaRSs) are encoded by nuclear genes. Syndromic disorders resulting from mutation of aaRSs genes display significant phenotypic heterogeneity. We expand aaRSs-related phenotypes through characterization of the clinical and molecular basis of a novel autosomal-recessive syndrome manifesting severe mental retardation, ataxia, speech impairment, epilepsy, short stature, microcephaly, hypogonadism, and growth hormone deficiency. RESULTS: A G>A variant in exon 29 of VARS2 (c.3650G>A) (NM_006295) was identified in the index case. This homozygous variant was confirmed by Sanger sequencing and segregated with disease in the family studied. The c.3650G>A change results in alteration of arginine to histidine at residue 1217 (R1217H) of the mature protein and is predicted to be pathogenic. CONCLUSIONS: These findings contribute to a growing list of aaRSs disorders, broadens the spectrum of phenotypes attributable to VARS2 mutations, and provides new insight into genotype-phenotype correlations among the mitochondrial synthetase genes.


Asunto(s)
Epilepsia/genética , Antígenos HLA/genética , Hormona de Crecimiento Humana/deficiencia , Hipogonadismo/genética , Discapacidad Intelectual/genética , Valina-ARNt Ligasa/genética , Estatura/genética , Mapeo Cromosómico , Exoma , Femenino , Genes Recesivos , Trastornos del Crecimiento/genética , Antígenos HLA/metabolismo , Hormona de Crecimiento Humana/genética , Humanos , Masculino , Linaje , Embarazo , Síndrome , Valina-ARNt Ligasa/metabolismo , Adulto Joven
3.
Hum Genomics ; 11(1): 33, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29221463

RESUMEN

CORRECTION: After publication of the article [1], it has been brought to our attention that there is a nomenclature issue with this article. At the time of acceptance, the VARS2 mutation was considered equivalent to the VARS2 mutation. However, this has changed so that VARS now only refers to shorter mitochondrial sequence of valyl-tRNA synthesase containing 1093 amino acids. "Therefore, in the context of this article, every usage of "VARS2" should be replaced with "VARS" when referring to the causative variant".

4.
J Med Genet ; 53(5): 338-47, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26862157

RESUMEN

BACKGROUND: Inherited cystic kidney disorders are a common cause of end-stage renal disease. Over 50 ciliopathy genes, which encode proteins that influence the structure and function of the primary cilia, are implicated in cystic kidney disease. METHODS: To define the phenotype and genotype of cystic kidney disease in fetuses and neonates, we correlated antenatal ultrasound examination and postnatal renal ultrasound examination with targeted exon sequencing, using a renal gene panel. A cohort of 44 families in whom antenatal renal ultrasound scanning findings in affected cases included bilateral cystic kidney disease, echogenic kidneys or enlarged kidneys was investigated. RESULTS: In this cohort, disease phenotypes were severe with 36 cases of stillbirth or perinatal death. Extra renal malformations, including encephalocele, polydactyly and heart malformations, consistent with ciliopathy phenotypes, were frequently detected. Renal gene panel testing identified causative mutations in 21 out of 34 families (62%), where patient and parental DNA was available. In the remaining 10 families, where only parental DNA was available, 7 inferred causative mutations were found. Together, mutations were found in 12 different genes with a total of 13 novel pathogenic variants, including an inferred novel variant in NEK8. Mutations in CC2D2A were the most common cause of an antenatal cystic kidney disease and a suspected ciliopathy in our cohort. CONCLUSIONS: In families with ciliopathy phenotypes, mutational analysis using a targeted renal gene panel allows a rapid molecular diagnosis and provides important information for patients, parents and their physicians.


Asunto(s)
Ciliopatías/metabolismo , Análisis Mutacional de ADN , Feto/metabolismo , Enfermedades Renales Quísticas/metabolismo , Mutación , Árabes/genética , Ciliopatías/genética , Proteínas del Citoesqueleto , Exones , Femenino , Humanos , Recién Nacido , Enfermedades Renales Quísticas/congénito , Enfermedades Renales Quísticas/genética , Quinasas Relacionadas con NIMA/genética , Muerte Perinatal , Embarazo , Proteínas/genética , Arabia Saudita , Síndrome
5.
J Med Genet ; 53(11): 786-792, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27582084

RESUMEN

BACKGROUND: Voltage-gated potassium channels are highly diverse proteins representing the most complex class of voltage-gated ion channels from structural and functional perspectives. Deficiency of these channels usually results in various human disorders. OBJECTIVES: To describe a novel autosomal recessive syndrome associated with KCNA4 deficiency leading to congenital cataract, abnormal striatum, intellectual disability and attention deficit hyperactivity disorder. METHODS: We used SNP arrays, linkage analyses, autozygosity mapping, whole-exome sequencing, RT-PCR and two-electrode voltage-clamp recording. RESULTS: We identified a missense variant (p.Arg89Gln) in KCNA4 in four patients from a consanguineous family manifesting a novel syndrome of congenital cataract, abnormal striatum, intellectual disability and attention deficit hyperactivity disorder. The variant was fully segregated with the disease and absent in 747 ethnically matched exomes. Xenopus oocytes were injected with human Kv1.4 wild-type mRNA, R89Q and WT/R89Q channels. The wild type had mean current amplitude that was significantly greater than those recorded from the cells expressing the same amount of mutant mRNA. Co-expression of the wild type and mutant mRNAs resulted in mean current amplitude that was significantly different from that of the wild type. RT-PCR indicated that KCNA4 is present in mouse brain, lens and retina. KCNA4 interacts with several molecules including synaptotagmin I, DLG1 and DLG2. The channel co-localises with cholinergic amacrine and rod bipolar cells in rats and is widely distributed in the central nervous system. Based on previous studies, the channel is highly expressed in outer retina, rod inner segments, hippocampus and concentrated in axonal membranes. CONCLUSION: KCNA4 (Kv1.4) is implicated in a novel syndrome characterised by striatal thinning, congenital cataract and attention deficit hyperactivity disorder. Our study highlights potassium channels' role in ocular and neuronal genetics.

6.
Clin Endocrinol (Oxf) ; 81(1): 109-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24382015

RESUMEN

OBJECTIVE: 1α, 25(OH)2 D3 (calcitriol), the active form of vitamin D, has been shown to exert antiproliferative effects in many cancers. Overexpression of CYP24A1, the primary vitamin D-inactivating enzyme, is also observed in a variety of human cancers, thus potentially neutralizing the antitumour effect of 1α, 25(OH)2 D3. This study investigates the expression of CYP24A1 and the effect of BRAF(V600E) on its expression in thyroid cancer. METHODS: We investigated 60 papillary thyroid carcinoma (PTC) specimens for CYP24A1 expression and its association with BRAF mutation and disease progression. CYP24A1 expression was measured by real-time RT-PCR, and BRAF(V600E) mutation was detected by PCR-DNA sequencing analysis. The interaction between BRAF(V600E) and CYP24A1 expression was determined by Western blot analysis and real-time RT-PCR. RESULTS: CYP24A1 expression was increased in PTC as compared to benign multinodular goitre. The expression was further increased in stage III and IV tumours. There is a strong correlation between CYP24A1 overexpression and BRAF(V600E) mutation (P < 0·01). In thyroid cancer cell lines expressing BRAF(V600E) , CYP24A1 expression was significantly higher when compared to those without BRAF(V600E) expression. BRAF(V600E) transgene expression in CAL62 cell line can induce CYP24A1 expression. Furthermore, BRAF(V600E) inhibitor PLX4720 can significantly down-regulate CYP24A1 expression and enhance the antiproliferative effects of calcitriol in thyroid cancer cell lines. CONCLUSION: CYP24A1 overexpression is a poor prognostic indicator for PTC and may reflect BRAF(V600E) mutation and MARK activation. The crosstalk between vitamin D and MAPK signalling pathways results in resistance to calcitriol-mediated antitumour effects, and the resistance can be reversed by BRAF(V600E) inhibitor PLX4720.


Asunto(s)
Carcinoma Papilar/enzimología , Carcinoma Papilar/genética , Carcinoma/enzimología , Carcinoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/genética , Vitamina D3 24-Hidroxilasa/genética , Carcinoma/patología , Carcinoma Papilar/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Técnicas In Vitro , Mutación/genética , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/patología
7.
Genome Med ; 15(1): 44, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344829

RESUMEN

BACKGROUND: The clinical utility of exome sequencing is now well documented. Rapid exome sequencing (RES) is more resource-intensive than regular exome sequencing and is typically employed in specialized clinical settings wherein urgent molecular diagnosis is thought to influence acute management. Studies on the clinical utility of RES have been largely limited to outbred populations. METHODS: Here, we describe our experience with rapid exome sequencing (RES) in a highly consanguineous population. Clinical settings included intensive care units, prenatal cases approaching the legal cutoff for termination, and urgent transplant decisions. RESULTS: A positive molecular finding (a pathogenic or likely pathogenic variant that explains the phenotype) was observed in 80 of 189 cases (42%), while 15 (8%) and 94 (50%) received ambiguous (variant of uncertain significance (VUS)) and negative results, respectively. The consanguineous nature of the study population gave us an opportunity to observe highly unusual and severe phenotypic expressions of previously reported genes. Clinical utility was observed in nearly all (79/80) cases with positive molecular findings and included management decisions, prognostication, and reproductive counseling. Reproductive counseling is a particularly important utility in this population where the overwhelming majority (86%) of identified variants are autosomal recessive, which are more actionable in this regard than the de novo variants typically reported by RES elsewhere. Indeed, our cost-effectiveness analysis shows compelling cost savings in the study population. CONCLUSIONS: This work expands the diversity of environments in which RES has a demonstrable clinical utility.


Asunto(s)
Consanguinidad , Embarazo , Femenino , Humanos , Secuenciación del Exoma , Fenotipo
9.
Thyroid ; 24(8): 1256-66, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24798740

RESUMEN

BACKGROUND: RET/PTC rearrangement, RAS, and BRAF mutations are considered to be mutually exclusive in papillary thyroid carcinoma (PTC). However, although concomitant mutations of RET/PTC, RAS, or BRAF have been reported recently, their significance for tumor progression and survival remains unclear. We sought to examine the prognostic value of concomitant mutations in PTC. METHODS: We investigated 88 PTC for concomitant mutations. Mutation in BRAF exon 15, KRAS, NRAS, and HRAS were studied by polymerase chain reaction (PCR)-sequencing of tumor DNA; RET/PTC rearrangement was determined by reverse transcription (RT)-PCR-sequencing of tumor cDNA. RESULTS: BRAF(V600E) was detected in 39 of 82 classic PTC (CPTC) and in all three tall-cell variants (49%, 42/85). KRAS mutation (p.Q61R and p.S65N) was detected in two CPTC (2%, 2/88) and NRAS(Q61R) in one CPTC and two follicular variant PTC (FVPTC; 3%, 3/88). KRAS(S65N) was identified for the first time in thyroid cancer and could activate mitogen-associated protein kinase (MAPK). RET/PTC-1 was detected in nine CPTC, one tall-cell variant, and two FVPTC. Concomitant BRAF(V600E) and KRAS, or BRAF(V600E) and RET/PTC-1 mutations were found in two CPTC, and six CPTC and one tall-cell variant, respectively. In total, 11 concomitant mutations were found in 88 PTC samples (13%), and most of them were in the advanced stage of disease (8/11, 73%; p<0.01). CONCLUSIONS: Our data show that concomitant mutations are a frequent event in advanced PTC and are associated with poor prognosis. The concomitant mutations may represent intratumor heterogeneity and could exert a gene dosage effect to promote disease progression. KRAS(S65N) can constitutively activate the MAPK pathway.


Asunto(s)
Carcinoma/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-ret/genética , Neoplasias de la Tiroides/genética , Proteínas ras/genética , Adolescente , Adulto , Carcinoma/metabolismo , Carcinoma/mortalidad , Carcinoma Papilar , Proliferación Celular , Clonación Molecular , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Reordenamiento Génico , Genes ras/genética , Humanos , Estimación de Kaplan-Meier , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , Pronóstico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/mortalidad , Adulto Joven , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA