Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 204(3): 660-670, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31852751

RESUMEN

The influx of neutrophils to infection sites is a fundamental step in host defenses against the frequent human pathogen group B Streptococcus (GBS) and other extracellular bacteria. Using a mouse model of GBS-induced peritonitis, we show in this study that the chemokines Cxcl1 and Cxcl2 play distinctive roles in enhancing the recruitment and the antibacterial activities of neutrophils in a manner that is linked to differences in the cellular sources of these mediators. Cell depletion experiments demonstrated that neutrophils make a significant contribution to the in vivo production of Cxcl2 but not Cxcl1. In vitro, neutrophils responded weakly to LPS but released high levels of Cxcl2 after stimulation with GBS or other bacteria. Neutrophil-derived Cxcl2 acted in an autocrinous manner to increase its own production and to enhance antibacterial activities, including the release of oxygen radicals. In both neutrophils and macrophages, the production of Cxcl1/2 largely required the presence of functional UNC93B1, a chaperone protein involved in signaling by endosomal TLRs. Moreover, the phenotype of UNC93B1-defective phagocytes could be recapitulated by the simultaneous absence of TLR7, 9, and 13 but not by the absence of individual TLRs. Collectively, our data show that neutrophils recognize Gram-positive and Gram-negative bacteria by means of multiple phagosomal TLRs, resulting in de novo synthesis of Cxcl2, amplification of neutrophil recruitment, and potentiation of their antibacterial activities. These data may be useful to devise alternative therapeutic strategies aimed at enhancing the recruitment and the functional activities of polymorphonuclear leukocytes during infections caused by antibiotic-resistant bacteria.


Asunto(s)
Infecciones Bacterianas/inmunología , Quimiocina CXCL2/metabolismo , Endosomas/metabolismo , Neutrófilos/inmunología , Peritonitis/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Receptores Toll-Like/metabolismo
2.
Nat Immunol ; 10(6): 587-94, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19430477

RESUMEN

Little is known of how and where bacterial recognition triggers the induction of type I interferon. Whether the type of recognition receptor used in these responses is determined by the subcellular location of bacteria is not understood. Here we show that phagosomal bacteria such as group B streptococcus, but not cytosolic bacteria, potently induced interferon in conventional dendritic cells by a mechanism that required Toll-like receptor 7, the adaptor MyD88 and the transcription factor IRF1, all of which localized together with bacterial products in degradative vacuoles bearing lysosomal markers. Thus, this cell type-specific recognition pathway links lysosomal recognition of bacterial RNA with a robust, host-protective interferon response.


Asunto(s)
Células Dendríticas/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Streptococcus agalactiae/inmunología , Receptor Toll-Like 7/metabolismo , Animales , Animales Recién Nacidos/inmunología , Animales Recién Nacidos/microbiología , Células Dendríticas/inmunología , Femenino , Factor 1 Regulador del Interferón/inmunología , Factor 1 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Lisosomas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Fagocitosis , Fagosomas/inmunología , Fagosomas/metabolismo , ARN Bacteriano/metabolismo , Transducción de Señal , Infecciones Estreptocócicas/inmunología , Receptor Toll-Like 7/inmunología
3.
New Microbiol ; 44(4): 227-233, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34942012

RESUMEN

The aim of this study was to determine the prevalence of extended-spectrum ß-lactamases (ESBLs)- and carbapenemase-producing fermentative Gram-negative bacteria (FGNB) in a University Hospital in Southern Italy. These bacteria have the potential to disseminate bacterial resistance in healthcare settings and cause untreatable and prolonged infections associated with high rates of mortality. A retrospective observational study was carried out in a University Hospital in Sicily from January to December 2019. A total of 1046 FGNB were recovered from different clinical samples among which 40%, 15% and 37% were, respectively, MDR, carbapenemase and ESBL producers. Antibiotic resistance profile of FGNB against the first-line drugs was remarkably high. K. pneumoniae (57%) followed by E. coli (27%) were found here as the major sources of ESBL producers. The highest proportion of ESBL producers was from ICU ward (72%), and were isolated from urine samples (63.6%) followed by blood samples (54%). Carbapenemase production among the FGNB in our study was about 0.9%, which is more than twice than the prevalence rate reported by the European Antimicrobial Resistance Surveillance Network (ECDC) (0.4%). To our knowledge, this is the first report on the prevalence of ESBL and carbapenemase-producing FGNB in this region. Our data clearly indicate the importance of implementing antibiotic stewardship strategies in our region to reduce the unnecessary use of antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Antibacterianos/farmacología , Proteínas Bacterianas , Bacterias Gramnegativas , Hospitales , Humanos , Pruebas de Sensibilidad Microbiana , Sicilia , beta-Lactamasas
4.
Med Mycol ; 58(8): 1138-1148, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32246714

RESUMEN

Members of the C. neoformans/C. gattiii species complex are an important cause of serious humans infections, including meningoencephalitis. We describe here a 45 kDa extracellular cellulase purified from culture supernatants of C. neoformans var. neoformans. The N-terminal sequence obtained from the purified protein was used to isolate a clone containing the full-length coding sequence from a C. neoformans var. neoformans (strain B-3501A) cDNA library. Bioinformatics analysis indicated that this gene is present, with variable homology, in all sequenced genomes of the C. neoformans/C. gattii species complex. The cDNA clone was used to produce a recombinant 45 kDa protein in E. coli that displayed the ability to convert carboxymethyl cellulose and was therefore designated as NG-Case (standing for Neoformans Gattii Cellulase). To explore its potential use as a vaccine candidate, the recombinant protein was used to immunize mice and was found capable of inducing T helper type 1 responses and delayed-type hypersensitivity reactions, but not immune protection against a highly virulent C. neoformans var grubii strain. These data may be useful to better understand the mechanisms underlying the ability C. neoformans/C. gattii to colonize plant habitats and to interact with the human host during infection.


Asunto(s)
Celulasa/inmunología , Cryptococcus/enzimología , Proteínas Fúngicas/inmunología , Animales , Carboximetilcelulosa de Sodio/metabolismo , Celulasa/química , Celulasa/genética , Celulasa/metabolismo , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus/genética , Cryptococcus/inmunología , Cryptococcus/metabolismo , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/metabolismo , Medios de Cultivo Condicionados , Citocinas/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inmunización , Ratones , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Células TH1/inmunología
5.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317145

RESUMEN

Neuroinflammation and autoimmune mechanisms have a key part in the pathogenesis of Parkinson's disease (PD). Therefore, we evaluated the role of Toll-like receptors (TLRs) as a link between inflammation and autoimmunity in PD. An in vivo model of PD was performed by administration of 1-metil 4-fenil 1,2,3,6-tetraidro-piridina (MPTP) at the dose of 20 mg/kg every 2 h for a total administration of 80/kg, both in single Knock Out (KO) mice for TLR7, TLR 8, and TLR9 and in double KO mice for TLR 7/8-/-. All animals were compared with WT animals used as a control group. All animals were sacrificed after 7 days form the first administration of MPTP. The genetic absence of TLR 7 and 8 modified the PD pathway, increasing the immunoreactivity for TH and DAT compared to PD groups and decreasing microglia and astrocytes activation. Moreover, the deletion of TLR7 and TLR8 significantly reduced T-cell infiltration in the substantia nigra and lymph nodes, suggesting a reduction of T-cell activation. Therefore, our result highlights a possibility that an immunotherapy approach, by using a dual antagonist of TLR 7 and 8, could be considered as a possible target to develop new therapies for Parkinson diseases.


Asunto(s)
Intoxicación por MPTP/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo , Animales , Astrocitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Sustancia Negra/metabolismo , Linfocitos T/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/genética
6.
Mol Microbiol ; 110(1): 82-94, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30030946

RESUMEN

Binding of microbial pathogens to host vitronectin (Vtn) is a common theme in the pathogenesis of invasive infections. In this study, we characterized the role of Vtn in the invasion of mucosal epithelial cells by Streptococcus agalactiae (i.e. group B streptococcus or GBS), a frequent human pathogen. Moreover, we identified PbsP, a previously described plasminogen-binding protein of GBS, as a dual adhesin that can also interact with human Vtn through its streptococcal surface repeat (SSURE) domains. Deletion of the pbsP gene decreases both bacterial adhesion to Vtn-coated inert surfaces and the ability of GBS to interact with epithelial cells. Bacterial adherence to and invasion of epithelial cells were either inhibited or enhanced by cell pretreatment with, respectively, anti-Vtn antibodies or Vtn, confirming the role of Vtn as a GBS ligand on host cells. Finally, antibodies directed against the integrin αv subunit inhibited Vtn-dependent cell invasion by GBS. Collectively, these results indicate that Vtn acts as a bridge between the SSURE domains of PbsP on the GBS surface and host integrins to promote bacterial invasion of epithelial cells. Therefore, inhibition of interactions between PbsP and extracellular matrix components could represent a viable strategy to prevent colonization and invasive disease by GBS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Integrina alfaV/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidad , Vitronectina/metabolismo , Células A549 , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Células CACO-2 , Pared Celular/metabolismo , Células Epiteliales/microbiología , Humanos , Integrina alfaV/genética , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus agalactiae/genética , Vitronectina/genética
7.
Mol Microbiol ; 101(1): 27-41, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26888569

RESUMEN

Streptococcus agalactiae (Group B Streptococcus or GBS) is a leading cause of invasive infections in neonates whose virulence is dependent on its ability to interact with cells and host components. We here characterized a surface protein with a critical function in GBS pathophysiology. This adhesin, designated PbsP, possesses two Streptococcal Surface Repeat domains, a methionine and lysine-rich region, and a LPXTG cell wall-anchoring motif. PbsP mediates plasminogen (Plg) binding both in vitro and in vivo and we showed that cell surface-bound Plg can be activated into plasmin by tissue plasminogen activator to increase the bacterial extracellular proteolytic activity. Absence of PbsP results in a decreased bacterial transmigration across brain endothelial cells and impaired virulence in a murine model of infection. PbsP is conserved among the main GBS lineages and is a major plasminogen adhesin in non-CC17 GBS strains. Importantly, immunization of mice with recombinant PbsP confers protective immunity. Our results indicate that GBS have evolved different strategies to recruit Plg which indicates that the ability to acquire cell surface proteolytic activity is essential for the invasiveness of this bacterium.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Plasminógeno/metabolismo , Streptococcus agalactiae/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Bacteriana/fisiología , Pared Celular/metabolismo , Células Endoteliales/metabolismo , Fibrinolisina/metabolismo , Humanos , Ratones , Unión Proteica , Infecciones Estreptocócicas/microbiología , Streptococcus/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Virulencia
8.
Biochim Biophys Acta ; 1849(3): 247-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25497382

RESUMEN

Inactivation of p14ARF and p16INK4A by epigenetic changes in cutaneous and uveal melanoma has been here investigated. Compared with melanocytes, p14ARF mRNA reduction and p16INK4A inactivation were frequently noticed. No association between p14ARF promoter methylation and mRNA levels was found, whereas aberrant p16INK4A methylation was associated with gene silencing (p<0.001). Comparative analysis within melanomas of different Breslow's thicknesses showed that drastic reductions in p14ARF and p16INK4A expression appeared at the level of thin/intermediate and intermediate/thick transitions. The effects of 5-aza-2'-deoxycytidine (5-aza-dC) and suberanilohydroxamic acid (SAHA) on in vivo binding of DNA methyltransferases (DNMTs) and acetyl histone H3/H4 to p14ARF and p16INK4A promoters were tested together with the impact of ectopic expression of p14ARF and p16INK4A on cell proliferation, migration, and invasion. SAHA treatment induced H3 and H4 hyperacetylation at the p14ARF promoter followed by increased p14ARF expression, whereas exposure to 5-aza-dC decreased the recruitment of DNMT1 and DNMT3b at the p16INK4A promoter and reactivated p16INK4A. Studies on promoter-associated di-methyl histone H3 (Lys4) levels ruled out an involvement of this epigenetic trait on p14ARF and p16INK4A expression. The enforced expression of p14ARF or p16INK4A and, even more so, their co-expression, significantly reduced cell proliferation, migration and invasion. Our data pinpoint: i) a frequent impairment of p14ARF and p16INK4A gene expression by epigenetic modifications in melanoma; ii) histone hypoacetylation as the dominant mechanism of p14ARF silencing; and iii) 5' CpG promoter methylation as the major mechanism of p16INK4A gene inactivation. Collectively, our data suggest that selected epi-drugs may be useful in melanoma treatment.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Melanoma/genética , Proteína p14ARF Supresora de Tumor/biosíntesis , Neoplasias de la Úvea/genética , Adulto , Azacitidina/administración & dosificación , Azacitidina/análogos & derivados , Línea Celular Tumoral , Metilación de ADN/genética , Decitabina , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Histona Desacetilasas/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Regiones Promotoras Genéticas , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología
9.
J Biol Chem ; 289(30): 21003-21015, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24904056

RESUMEN

Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine.


Asunto(s)
Proteínas Bacterianas/inmunología , Fibrinógeno/inmunología , Interacciones Huésped-Patógeno/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/fisiología , Factores de Virulencia/inmunología , Animales , Adhesión Bacteriana/genética , Adhesión Bacteriana/inmunología , Proteínas Bacterianas/genética , Células CACO-2 , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/microbiología , Células Endoteliales/patología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/patología , Fibrinógeno/genética , Humanos , Ratones , Unión Proteica/genética , Unión Proteica/inmunología , Infecciones Estreptocócicas/genética , Vacunas Estreptocócicas/genética , Vacunas Estreptocócicas/inmunología , Factores de Virulencia/genética
10.
Infect Immun ; 82(12): 5013-22, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25225249

RESUMEN

Murine Toll-like receptor 13 (TLR13), an endosomal receptor that is not present in humans, is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA (23S rRNA). Little is known, however, of the impact of TLR13 on antibacterial host defenses. Here we examined the role of this receptor in the context of infection induced by the model pathogen group B streptococcus (GBS). To this end, we used bacterial strains masked from TLR13 recognition by virtue of constitutive expression of the ErmC methyltransferase, which results in dimethylation of the 23S rRNA motif at a critical adenine residue. We found that TLR13-mediated rRNA recognition was required for optimal induction of tumor necrosis factor alpha and nitrous oxide in dendritic cell and macrophage cultures stimulated with heat-killed bacteria or purified bacterial RNA. However, TLR13-dependent recognition was redundant when live bacteria were used as a stimulus. Moreover, masking bacterial rRNA from TLR13 recognition did not increase the ability of GBS to avoid host defenses and replicate in vivo. In contrast, increased susceptibility to infection was observed under conditions in which signaling by all endosomal TLRs was abolished, i.e., in mice with a loss-of-function mutation in the chaperone protein UNC93B1. Our data lend support to the conclusion that TLR13 participates in GBS recognition, although blockade of the function of this receptor can be compensated for by other endosomal TLRs. Lack of selective pressure by bacterial infections might explain the evolutionary loss of TLR13 in humans. However, further studies using different bacterial species are needed to prove this hypothesis.


Asunto(s)
Inmunidad Innata , Streptococcus agalactiae/inmunología , Receptores Toll-Like/inmunología , Animales , Células Cultivadas , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Células Dendríticas , Macrófagos/inmunología , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 23S/inmunología , Análisis de Secuencia de ADN
11.
J Immunol ; 188(4): 1953-60, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22250086

RESUMEN

Group B Streptococcus (GBS) is a frequent agent of life-threatening sepsis and meningitis in neonates and adults with predisposing conditions. We tested the hypothesis that activation of the inflammasome, an inflammatory signaling complex, is involved in host defenses against this pathogen. We show in this study that murine bone marrow-derived conventional dendritic cells responded to GBS by secreting IL-1ß and IL-18. IL-1ß release required both pro-IL-1ß transcription and caspase-1-dependent proteolytic cleavage of intracellular pro-IL-1ß. Dendritic cells lacking the TLR adaptor MyD88, but not those lacking TLR2, were unable to produce pro-IL-1ß mRNA in response to GBS. Pro-IL-1ß cleavage and secretion of the mature IL-1ß form depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) sensor and the apoptosis-associated speck-like protein containing a caspase activation and recruitment domain adaptor. Moreover, activation of the NLRP3 inflammasome required GBS expression of ß-hemolysin, an important virulence factor. We further found that mice lacking NLRP3, apoptosis-associated speck-like protein, or caspase-1 were considerably more susceptible to infection than wild-type mice. Our data link the production of a major virulence factor by GBS with the activation of a highly effective anti-GBS response triggered by the NLRP3 inflammasome.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Inflamasomas/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Bacterianas/biosíntesis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Caspasa 1/genética , Caspasa 1/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Femenino , Proteínas Hemolisinas/biosíntesis , Interleucina-18/biosíntesis , Interleucina-18/metabolismo , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Mensajero/biosíntesis , Transducción de Señal , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidad , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética
12.
Curr Genomics ; 15(6): 420-35, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25646071

RESUMEN

Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation.

13.
J Infect Dis ; 207(8): 1339-47, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23322859

RESUMEN

Iron acquisition is critical for virulence of the human pathogenic fungus Cryptococcus neoformans. The cryptococcal transcript for the extracellular mannoprotein Cig1 is highly regulated by iron and abundant in iron-starved cells, suggesting a role in iron acquisition. Indeed, loss of Cig1 resulted in delayed growth on heme at physiological pH. Expression of CIG1 is regulated by the pH-responsive transcription factor Rim101, and loss of Rim101 also impaired growth on heme. A cig1Δ mutant was less susceptible than the wild-type strain to noniron metalloporphyrins, further indicating a role for Cig1 in heme uptake. Recombinant Cig1 exhibited the absorbance spectrum of a heme-binding protein upon heme titration, and Cig1 may therefore function as a hemophore at the cell surface. Cig1 contributed to virulence in a mouse model of cryptococcosis but only in a mutant that also lacked the high-affinity iron uptake system. Overall, Cig1-mediated heme uptake is a potential therapeutic target in C. neoformans.


Asunto(s)
Criptococosis/patología , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Animales , Recuento de Colonia Microbiana , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Femenino , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Ratones , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría/métodos , Volumetría , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
14.
Eur J Microbiol Immunol (Bp) ; 14(2): 86-96, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38498078

RESUMEN

Schistosomiasis is a neglected tropical disease that is prevalent in low- and middle-income countries. There are five human pathogenic species, of which Schistosoma haematobium, Schistosoma mansoni and Schistosoma japonicum are the most prevalent worldwide and cause the greatest burden of disease in terms of mortality and morbidity. In addition, hybrid schistosomes have been identified through molecular analysis. Human infection occurs when cercariae, the larval form of the parasite, penetrate the skin of people while bathing in contaminated waters such as lakes and rivers. Schistosomiasis can cause both urogenital and intestinal symptoms. Urogenital symptoms include haematuria, bladder fibrosis, kidney damage, and an increased risk of bladder cancer. Intestinal symptoms may include abdominal pain, sometimes accompanied by diarrhoea and blood in the stool. Schistosomiasis affects more than 250 million people and causes approximately 70 million Disability-Adjusted Life Years (DALYs), mainly in Africa, South America, and Asia. To control infection, it is essential to establish sensitive and specific diagnostic tests for epidemiological surveillance and morbidity reduction. This review provides an overview of schistosomiasis, with a focus on available diagnostic tools for Schistosoma spp. Current molecular detection methods and progress in the development of new diagnostics for schistosomiasis infection are also discussed.

15.
Antibiotics (Basel) ; 13(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38391540

RESUMEN

Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.

16.
Microorganisms ; 12(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38792757

RESUMEN

Candida auris has been identified by the World Health Organization (WHO) as a critical priority pathogen on its latest list of fungi. C. auris infections are reported in the bloodstream and less commonly in the cerebrospinal fluid and abdomen, with mortality rates that range between 30% and 72%. However, no large-scale epidemiology studies have been reported until now. The diagnosis of C. auris infections can be challenging, particularly when employing conventional techniques. This can impede the early detection of outbreaks and the implementation of appropriate control measures. The yeast can easily spread between patients and in healthcare settings through contaminated environments or equipment, where it can survive for extended periods. Therefore, it would be desirable to screen patients for C. auris colonisation. This would allow facilities to identify patients with the disease and take appropriate prevention and control measures. It is frequently unsusceptible to drugs, with varying patterns of resistance observed among clades and geographical regions. This review provides updates on C. auris, including epidemiology, clinical characteristics, genomic analysis, evolution, colonisation, infection, identification, resistance profiles, therapeutic options, prevention, and control.

17.
Eur J Immunol ; 42(10): 2632-43, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22777843

RESUMEN

Despite convincing evidence for involvement of members of the Toll-like receptor (TLR) family in fungal recognition, little is known of the functional role of individual TLRs in antifungal defenses. We found here that TLR7 was partially required for the induction of IL-12 (IL-12p70) by Candida albicans or Saccharomyces cerevisiae. Moreover, the IL-12p70 response was completely abrogated in cells from 3d mice, which are unable to mobilize TLRs to endosomal compartments, as well as in cells from mice lacking either the TLR adaptor MyD88 or the IRF1 transcription factor. Notably, purified fungal RNA recapitulated IL-12p70 induction by whole yeast. Although RNA could also induce moderate TLR7-dependent IL-23 and tumor necrosis factor-alpha (TNF-α) secretion, TLR7 and other endosomal TLRs were redundant for IL-23 or TNF-α induction by whole fungi. Importantly, mice lacking TLR7 or IRF1 were hypersusceptible to systemic C. albicans infection. Our data suggest that IRF1 is downstream of a novel, nonredundant fungal recognition pathway that has RNA as a major target and requires phagosomal recruitment of intracellular TLRs. This pathway differs from those involved in IL-23 or TNF-α responses, which we show here to be independent from translocation of intracellular TLRs, phagocytosis, or phagosomal acidification.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Células Dendríticas/inmunología , ARN de Hongos/inmunología , Animales , Candida albicans/genética , Citocinas/metabolismo , Células Dendríticas/microbiología , Susceptibilidad a Enfermedades , Endosomas/genética , Endosomas/metabolismo , Inmunidad , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Fagocitosis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/inmunología , Receptor Toll-Like 7/genética
18.
Pathogens ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678464

RESUMEN

Antibiotics primarily act on bacterial growth by eliminating bacteria or preventing them from reproducing and spreading [...].

19.
Pathogens ; 12(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37887729

RESUMEN

About 150 million people around the world experience urinary tract infections (UTI) every year, with adult women 30 times more likely to develop a UTI than men [...].

20.
Microorganisms ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37630472

RESUMEN

The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA